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ABSTRACT
The hypervolume indicator has become popular in recent
years both for performance assessment and to guide the
search of evolutionary multiobjective optimizers. Two criti-
cal research topics can be emphasized with respect to hyper-
volume-based search: (i) the hypervolume indicator inher-
ently introduces a specific preference and the question is
how arbitrary user preferences can be incorporated; (ii) the
exact calculation of the hypervolume indicator is expensive
and efficient approaches to tackle many-objective problems
are needed. In two previous studies, we addressed both is-
sues independently: a study proposed the weighted hyper-
volume indicator with which user-defined preferences can be
articulated; other studies exist that propose to estimate the
hypervolume indicator by Monte-Carlo sampling. Here, we
combine these two approaches for the first time and extend
them, i.e., we present an approach of sampling the weighted
hypervolume to incorporate user-defined preferences into the
search for problems with many objectives. In particular, we
propose weight distribution functions to stress extreme so-
lutions and to define preferred regions of the objective space
in terms of so-called preference points; sampling them al-
lows to tackle problems with many objectives. Experiments
on several test functions with up to 25 objectives show the
usefulness of the approach in terms of decision making and
search.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic

General Terms
Algorithms
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1. INTRODUCTION
The hypervolume indicator has been proposed about a

decade ago to compare the performance of multiobjective
optimization algorithms [26]. It measures the quality of a
set of solutions quantitatively as the “size of the space cov-
ered” [26]. Equivalent definitions based on the Lebesgue
measure [19], or the attainment function [23] have been pro-
posed later. The hypervolume indicator has also gained
interest as a selection criterion within multiobjective evo-
lutionary algorithms in recent years [17, 21, 4, 23, 3], es-
pecially if the number of objectives is large [3]. The main
reason for the hypervolume’s popularity is its property of
refining the Pareto dominance relation: whenever a solution
set is dominating another, the hypervolume indicator value
of the former is strictly larger than the one of the latter
[27]—resulting in the fact that a set that optimizes the hy-
pervolume indicator covers the entire Pareto front [15]. Up
to now, no unary indicator is known that is not based on
the hypervolume and that has the refinement property.

Clearly, using the hypervolume indicator for guiding search
introduces a certain preference. We investigated this re-
cently by characterizing the distribution of μ points that
maximize the hypervolume indicator [2]. One question that
is of special interest in practice is whether the inherent pref-
erence of the hypervolume indicator can be changed to arbi-
trary user preferences, e.g., towards extreme solutions or to-
wards so-called preference points1. There already exist vari-
ous studies that focus on the issue of preference articulation
in EMO, in particular integrating preferences such as prior-
ities, goals, and preference points [5, 11, 22]. However, none
of these methods leads to a Pareto-compliant relation—to
obtain such relations we proposed a generalized version of
the hypervolume indicator where arbitrary user preferences
can be incorporated by stressing certain regions of the ob-
jective space in terms of a weight distribution function [23].

In the same paper [23], we also propose three exemplary
weight distribution functions to incorporate user preferences
towards the extremes of the front and towards predefined
preference points for biobjective problems. The study is
only preliminary and inhibits two drawbacks: (i) the pro-
posed weight distribution function for articulating prefer-
ence points is not easily extendable to more than two ob-
jectives and (ii) the exact computation of the hypervolume

1Instead of the standard term reference point, see for exam-
ple [20], we use the term preference point throughout this
paper to reduce the likelihood of confusion with the hyper-
volume’s reference point.
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indicator is expensive if the number of objectives is high2.
In this paper, we tackle these two drawbacks by estimating

the weighted hypervolume indicator by Monte Carlo sam-
pling and propose according weight distribution functions
that can be used for incorporating user preferences for an
arbitrary number of objectives. In particular, we

• introduce the approach of sampling the weighted hy-
pervolume indicator based on the work for the stan-
dard hypervolume indicator in [3] to avoid the expo-
nential running time of the hypervolume indicator,

• propose two weight distributions to articulate prefer-
ences towards extremes and towards predefined pref-
erence points which can be arbitrarily combined and
applied to problems with any number of objectives and

• show the potentials of the new approach experimen-
tally for several test problems with up to 25 objectives
by means of both visual inspection and statistical tests.

The paper is organized as follows. We start with a brief re-
view of the weighted hypervolume indicator of [23] (Sec. 2).
Section 3 presents the general ideas of sampling the weighted
hypervolume after which two examples of weight distribu-
tions and their combination are introduced in Sec. 4. An
extensive experimental validation is presented in Sec. 5 be-
fore Sec. 6 concludes the paper.

2. THE WEIGHTED HYPERVOLUME
Throughout this study, we assume without loss of gen-

erality, that k objective functions fi : X �→ R (1 ≤ i ≤ k)
need to be minimized that map solutions x from the decision
space X to their objective vector f(x) = (f1(x), . . . , fk(x)).
Furthermore, we assume the underlying dominance struc-
ture is given by the weak Pareto dominance relation where
a solution a ∈ X weakly dominates another solution b ∈ X,
written a � b, if and only if fi(a) ≤ fi(b) holds for all
1 ≤ i ≤ k. We call a solution x∗ ∈ X Pareto optimal if there
is no other x ∈ X that dominates x∗, i.e., �x ∈ X : x �
x∗∧x∗ �� x. The set of all Pareto optimal solutions is called
Pareto set and its image Pareto front.

In this paper, we consider the following optimization goal:
find a set A of μ compromise solutions such that the weighted
hypervolume indicator value Iw

H(A) of [23] is maximized. To
this end, we recall the definition of the weighted hypervol-
ume indicator Iw

H(A) for a solution set A ⊆ X from [23]:

Iw
H(A) =

∫ �r

�l

w(�z) · αA(�z)d�z (1)

where αA(�z) =

{
1 if f(A) � {�z}
0 else

is the attainment func-

tion3 of a solution set A ⊆ X, �z ∈ Rk and w : Rk → R>0

is a weight distribution function where without loss of gen-

erality4
∫ �r
�l

w(�z)d�z = 1; the limits �l ∈ Rk and �r ∈ Rk of the

integral are parameters of the hypervolume, where usually �l
is set to (−∞, . . . ,−∞) and �r is called the reference point of
the indicator. We will see in the following section, that these

2Meanwhile, the #P-hardness proof in [6] has theoretically
shown that the hypervolume computation is indeed expo-
nential in the number of objectives unless P = NP .
3Where � is generalized to sets as follows: A � B iff ∀b ∈
B : ∃a ∈ A : a � b
4If

∫ �r
�l

w(�z)d�z �= 1 we can normalize w by
∫ �r
�l

w(�z)d�z with-
out changing the ordering of solutions with respect to the
hypervolume indicator.

points do not need to be fixed when the weighted hypervol-
ume is sampled according to Gaussian distributions where
the integral over the entire objective space is estimated.

3. SAMPLING THE HYPERVOLUME
INDICATOR

Monte Carlo sampling is a well-known and easy-to-use
approach to solve problems numerically by using random
numbers. Monte Carlo sampling is used within several ap-
plication areas such as atomic physics or finance. However,
its most popular field of application is the computation of
integrals [7].

3.1 Sampling the Non-Weighted Hypervolume
Using Monte Carlo methods to evaluate the hypervol-

ume indicator is not new. Everson et al. [14] sampled the
standard hypervolume for performance assessment whereas
Bader and Zitzler [3] proposed to sample the hypervolume
within multiobjective search. The basic idea behind sam-
pling the hypervolume is to draw N independent random
samples X1, . . . , XN from the objective space uniformly at
random within a defined (hyper-)box and use the fraction of
dominated objective vectors as an estimate for the hypervol-
ume indicator value IH(A). The attainment function αA of
a solution set A ⊆ X formalizes the domination of objective
vectors by assigning 1 to an objective vector if it is domi-
nated by A and 0 otherwise. The unweighted hypervolume
indicator can, thus, be estimated as5

IH(A) ≈ 1

N

N∑
k=1

αA(Xk) . (2)

As indicated in [3], the space from which the objective vec-
tors are sampled should be as small as possible to avoid
unnecessary samples, e.g., the (hyper-)box could have the
hypervolume’s reference point as one corner and the ideal
point as the opposite one. When used during the selection
step of a hypervolume-based multiobjective evolutionary al-
gorithms, e.g., in SMS-EMOA [4] or MO-CMA-ES[18], the
boxes can be much smaller if only the hypervolume loss of a
single solution has to be estimated, see [3] for details.

3.2 Sampling the Weighted Hypervolume
The straightforward way of approximating the weighted

hypervolume indicator of Eq. 1 is to sample X1, . . . , XN uni-
formly at random as before and use

Iw
H(A) ≈ 1

N

N∑
k=1

w(Xk)αA(Xk)

as an estimate of the weighted hypervolume. In this ap-
proach, however, the precision of the estimation heavily de-
pends on the weight distribution w: if the support of w is
small, the number of samples N needs to be large to have
a reliable estimation. Using Hoeffding’s inequality [16], one
can show that the length of a confidence interval for a given
confidence level is proportional to the supremum of w. In the

5The hypervolume indicator satisfies IH(A) = E(αA(X)),
where X is a random variable uniformly distributed on the
objective space. Therefore from the strong law of large num-
bers the right-hand side of Eq. 2 converges to IH(A) for the
number of samples N to infinity.
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extreme case of a dirac “function” as suggested in [23] this
would result in an infinite length for the confidence interval.

Therefore, we propose a different approach to sample the
weighted hypervolume indicator here. Since w is positive

and
∫ �r
�l

w(�z)d�z = 1, the weight function w is a density func-
tion. In principle, any density function can be used as w.
For an efficient way of sampling, however, we choose w in the
following such that we are able to sample efficiently random
numbers distributed according to w. For this reason, mul-
tivariate normal distributions and exponential distributions
will be used for sampling non-uniformly.

To give the explicit expression of the Monte Carlo estima-
tor let Xw denote a random variable admitting w as prob-
ability density function6. Let Xw

1 , . . . , Xw
N be N indepen-

dent samples of random variables distributed as Xw. The
weighted hypervolume Iw

H(A) corresponds to the expected
value of the random variable αA(Xw) and can be approxi-
mated by

Iw
H(A) ≈ 1

N

N∑
k=1

αA(Xw
k ) . (3)

This technique of sampling according to the weight distri-
bution function instead of uniformly has the advantage that
the accuracy of the estimate, i.e., the confidence interval, is
independent of the weight distribution7.

In order to sample weight distributions that are defined
as a mixture of several independent distributions wi (1 ≤
i ≤ m) as proposed in the following section, we propose
to distribute the number of samples among the different
distributions in the following way: a weight distribution
w(�z) =

∑m
i=1 pi · wi(�z) with

∑
1≤i≤m pi = 1 is estimated

by sampling each of the distributions wi independently with
N · pi samples and summing up the resulting estimates.

4. INTEGRATING USER PREFERENCES
In this section, we present two different weight distri-

bution functions to express user preferences. Both distri-
butions are continuous probability densities that enable to
draw samples according to the procedure presented above.
The first distribution allows to attribute importance to one
objective and the second to emphasize a preference point
in the objective space. We complete the section by demon-
strating how any number of the two distributions can be
combined, e.g., to use more than one preference point.

4.1 Stressing the Extremes
One potential preference a user might have is to optimize

preferably one objective, say fs. The corresponding weight
distribution should therefore increase for decreasing values
of fs. In terms of the rest of the objectives, the weight dis-

tribution should stay constant for changing values in order

6We refer to [13] for an extensive overview how random sam-
ples from those distributions can be generated.
7Denoting the estimator of Iw

H(A) (Eq. 3) as Îw
H(A,N) =

1
N

∑N
k=1 αA(Xw

k ), Hoeffding’s inequality implies that with

probability larger than 1−α, Iw
H(A) belongs to [Îw

H(A, N)−
tN,α, Îw

H(A,N) + tN,α] where tN,α =
(

8
N

log(2/α)
)1/2

which
is independent of w and the same confidence interval than
for the non-weighted case. In other words, it is not more
expensive to do a Monte Carlo integration of the weighted
hypervolume than for the standard hypervolume indicator.

not to introduce additional preference.
In [23] the authors proposed to use an exponential func-

tion as the weight distribution. Here, the same distribu-
tion is represented by the probability density function whose
marginal distribution for objective fs is an exponential dis-
tribution with rate parameter λ and whose marginal distri-
butions of the remaining objectives is a uniform distribution:

w(z1,· · ·, zk) =

⎧⎨
⎩

(∏
i�=s(b

u
i − bl

i)
)−1

λe−λ(zs−bl
s) �z ∈ B

0 �z /∈ B

where B = [bl
1, b

u
1 ] × . . . × [bl

k, bu
k ] denotes the space with

non-zero probability density.
Figure 1(a) shows the weight distribution for a biobjec-

tive problem when stressing f1 with an exponential dis-
tribution in f1 (λ = 5) together with a uniform distribu-
tion in the interval [0, 0.95] in the second objective (B =
[bl

s, b
u
s ] × [bl

2, b
u
2 ] = [0,∞] × [0, 0.95]).

The spread of the distribution is inversely proportional to
the parameter λ. Hence, the smaller λ the steeper the weight
distribution increases at the border of the objective space
and the smaller the weight farther away (see Figure 2(a)
for contour plots of the exponential weight distribution for
distinct values of λ).

4.2 Preference Points
Another user preference is the preference point [20]. This

point, as well as to a lesser extent the adjacent region, rep-
resents the most important part of the objective space for
the user. Together with the location of the preference point,
denoted by �μ = (μ1, · · · , μk)T ∈ Rk, the user has to define
a direction �t = (t1, · · · , tk)T ∈ Rk. The solutions should
preferably lie along this direction if the preference point can-
not be reached or, on the contrary, even better solutions are
found. The corresponding weight distribution function re-
flects this preference by having the largest values at the pref-
erence point and along �t while decreasing fast perpendicular
to �t. To this end, [23] proposes a bivariate ridge-like func-
tion that cannot be easily extended to an arbitrary number
of objectives. Therefore, we propose to use the following
multivariate Gaussian distribution here, which allows an ef-
ficient sampling according to Eq. 3 and which can be used
for any number of objectives. Besides �μ and �t, let σε, σt ∈ R

denote standard deviations of the distribution. Then the fol-
lowing probability density function describes a multivariate
normal distribution centered at �μ

w(�z) =
1

(2π)k/2|C|1/2
e−

1
2 (�z−�μ)T C−1(�z−�μ))

where the covariance matrix C := σ2
εI + σ2

t
�t�tT /‖�t‖2 is non-

singular with orthogonal eigenvectors �t,�t2, · · · ,�tk where the
vectors �t2, . . . ,�tk can be taken from an arbitrary orthogonal
basis of the hyperplane orthogonal to �t. The eigenvalues
associated to �t,�t2, · · · ,�tk are σ2

ε +σ2
t , σ2

ε , · · · , σ2
ε ; |C| denotes

the determinant of C.
The equidensity contours of the distributions are ellip-

soids whose principal axis are �t,�t2, · · · ,�tk, see Fig. 1(b). The
lengths of the axes are given by the two standard deviations
(i) σt for the axis spanned by �t and (ii) σε for the remain-
ing k − 1 axes perpendicular to �t. The larger σt is chosen
the farther the objective vectors can lie from the preference
point in direction of ±�t while they are still affected by the
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(a) Stressing the first objective (b) Preference point at �μ

Figure 1: Illustrates the exponential distribution that corresponds to stressing one objective (a) and the
Gaussian distribution representing a preference point (b). The left parts of the two subplots indicate the
notation used along with a contour plot at intervals of 10% of the maximum value observed (which occurs
on the second axis and at �μ respectively). The right parts of the subplots show the actual value of the
distribution as a third component.

weight distribution. At the same time, however, the number
of samples near the Pareto front approximation decreases
which reduces the accuracy of sampling.

The second variance, σε, influences the extension of points
close to the preference point. The smaller σε, the less wide-
spread the solutions are (see Figures 2(b) for contour plots
of three different choices of σε).

4.3 Combinations
A mixture of m weight distributions admitting the prob-

ability density functions w1(�z), . . . , wm(�z) yields the distri-
bution with density

w(�z) = p1w1(�z) + . . . + pmwm(�z)

where the pi are positive real numbers with p1+. . .+pm = 1.
Though it is not possible to translate any user preference
directly to a weight distribution function as in [1], a wide
range of different user preferences can be represented by
combining weight distributions. These are—in contrast to
the weight distributions in [1]—also applicable to problems
with more than two objectives. In the next section we will
examine mixtures of the two distributions presented above.

5. EXPERIMENTAL VALIDATION
In order to test the approach of articulating user prefer-

ences presented in Sec. 4, the sampling strategy is employed
by an existing hypervolume-based algorithm called “Hyper-
volume Estimation Algorithm for Multiobjective Optimiza-
tion (HypE)” [3]. The application to different multiobjective
test problems investigates three important aspects of the ap-
proach.

First, we investigate visually the influence of the differ-
ent parameters on the distribution of the resulting Pareto
front approximations for both approaches preferring prefer-
ence points and extremes. In particular, we investigate for a
preference point its location �μ, the direction �t and the influ-
ence of the standard deviations σε and σt. When stressing
extremes, we show the effects of changing the parameter λ.

Secondly, the weighted hypervolume approach is visually
compared to existing reference algorithms that do not opti-
mize any user preference explicitly for problems with more
than two objectives. This demonstrates that our approach

is—in contrast to [23]—also applicable to problems involving
more than two objectives.

Finally, a short statistical comparison on problems with
up to 25 objectives is carried out to investigate whether the
generated Pareto front approximations obtained by HypE,
as a matter of fact, better fulfill the underlying user prefer-
ence than Pareto fronts resulting from reference algorithms.

5.1 Experimental Setup
To maximize the weighted hypervolume, the evolution-

ary algorithm HypE [3] is used. While mating selection is
performed uniformly, the next population is chosen in envi-
ronmental selection as follows: first, the offspring and par-
ent population are merged and allocated to fronts by non-
dominated sorting. Thereafter, the worst front is removed
entirely as long as the resulting population size does not
fall below the desired population size. If excluding entire
fronts is no longer possible and there are still too many indi-
viduals in the population, the algorithm then starts remov-
ing individuals one-by-one from the worst front. Instead of
other hypervolume-based selection schemes such as the ones
in the SMS-EMOA [4] or the MO-CMA-ES [18], HypE not
only considers the hypervolume solely dominated by a so-
lution as its fitness but estimates the expected loss if more
than one solution is deleted from the population by means
of Monte Carlo sampling. To this end, 10, 000 samples are
generated according to the probability density functions pre-
sented in Sec. 4 using the corresponding built-in functions
of MATLAB R© version 2008a. These samples are then used
to calculate a fitness value for each individual of the worst
front. Iteratively, the individual with the smallest value is
deleted until the desired population size is reached where the
fitness values are recalculated after each removal using the
same samples as in the previous step. A detailed description
of the fitness calculation of HypE can be found in [3].

The evolutionary multiobjective algorithms NSGA-II [10]
and IBEA [25] serve as reference algorithms. For the latter,
the ε-indicator has been used since preliminary experiments
showed this variant to be superior to the one using the hy-
pervolume indicator. The parameters of IBEA are set as
κ = 0.05 and ρ = 1.1. All algorithms are run for 100 gener-
ations. New individuals are generated by the SBX crossover
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(a) (b) (c) (d)

Figure 2: Shows the Pareto front approximations (dots) found by HypE using different weight distribution
functions, shown as contour lines at intervals of 10% of the maximum weight value. For each column of three
figures one parameter of the sampled distribution was modified, i.e., (a) the rate parameter of the exponential
distribution λ, (b) the spread σε, (c) the direction �t and (d) the location �μ of the preference point (see text
for details and the values used). The test problem is ZDT1 where the Pareto front is shown as a solid line.

operator with ηc = 15 and the variable-wise polynomial mu-
tation operator with ηm = 20 [9]. The crossover and muta-
tion probabilities are set to 1 and 1/20 respectively.

For the biobjective test problems both the population size
and the number of offspring are set to 25 while for more ob-
jectives these numbers are doubled. For the biobjective in-
vestigations, the test problems ZDT1 (convex Pareto front),
ZDT3 (discontinuous Pareto front) [24] and DTLZ2 [12]
(concave Pareto front) are utilized with 20 decision vari-
ables. For higher dimensions only DTLZ2 is employed.

5.2 Visual Inspection of Parameter Choices
In this section, the influence of different parameters on the

weight distribution functions and the resulting Pareto front
approximations are investigated. Unless noted otherwise,
we use σt = 0.5, σε = 0.05 and �t = (1, 1) when stressing
a preference point and B = [0,∞] × [0, 3] when stressing
the first objective (fs = f1). The weight distributions are
indicated by contour lines at the intervals of 10% of the
maximum value that arises. The contour lines do not reflect
the actual weight but only the relative distribution thereof.
We tested multiple runs for each testcase that led to similar
results such that we mostly display only one run to illustrate
the influence of the weight on the distribution of points.

5.2.1 Spread of the Distribution
Both proposed weight distribution functions have param-

eters that cause the weight to be more or less spread. Fig-
ure 2(a) shows the weight distribution and the resulting
Pareto front approximation using the exponential distribu-
tion proposed in Sec. 4.1 for λ = 100 (top), λ = 20 (center)
and λ = 5 (bottom). Figure 2(b) shows the distribution of
points for a preference point located at �μ = (0.7, 0.3) where
σε is set to 0.2 (top), 0.05 (middle) and 0.01 (bottom).

5.2.2 Direction of the Distribution
By �t, the user can define the desired trade-off between

the objectives for the case that either the preference point
cannot be reached or if solutions dominating the preference
point are obtained. In Fig. 2(c) the preference point is po-
sitioned at �μ = (0, 0.4) which lies below the Pareto front
and can therefore not be reached. In this case, the direction
�t predetermines where the resulting points lie. In the top-
most example, a choice of �t = (cos(80 ◦), sin(80 ◦)) reflects a
higher preference of the first objective at the expense of the
second. On the other hand, the bottom figure is obtained
for �t = (1, 0), i.e., values of 0.4 are preferred for the second
objective and only increases of the first objective are desired.
The figure in the middle presents a compromise where the
focus lies close to the diagonal, �t = (cos(40 ◦), sin(40 ◦)).
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5.2.3 Location of the Preference Point
Since the preference point can be placed both too opti-

mistically (as in the previous section) or too pessimistically,
the parameter σt allows to tune how far away the individu-
als can be from the preference point and still be influenced
by it. For a fixed σt however, the location of the prefer-
ence point has a high impact on the resulting distribution
of solutions, see Fig. 2(d). If none to only a few samples are
dominated by the individuals (top, �μ = (−1.2,−1.4)), no
pressure towards the preference point is active—in fact only
non-dominated sorting operates. In this case, the preference
point should be combined with a uniform distribution, e.g.,
as in Fig. 3(a) 90% of the samples are used for the pref-
erence point and 10% to sample uniformly in the objective
space within [0, 3] × [0, 3]. This causes the solutions to be
distributed according to the unweighted hypervolume indi-
cator as long as the preference point has no influence.

As soon as a couple of samples are dominated, the corre-
sponding individuals are promoted which leads to an ac-
cumulation in that area (middle, �μ = (−0.3,−0.5)). If
the preference point is chosen very pessimistically (bottom,
�μ = (1.5, 1.3)) individuals are able to dominate all or most
of the samples even if they are not located where the direc-
tion �t dictates. This leads to a much ampler arrangement of
solutions than expected considering the chosen σε.

5.2.4 Combinations of Distributions
As demonstrated in Sec. 4, any number of weight distri-

bution functions can be combined as a weighted sum, even
assigning them different weights or focus. For example, the
user might define different preference points he or she is in-
terested in as depicted in Fig. 3(b): three preference points
are positioned at �μ = (0.2, 0.8), at �μ = (0.5, 0.5) and at
�μ = (0.8, 0.2). The one in the middle is declared to be the
most important one by assigning the largest weight p2 = 0.5,
the preference points to the left and right use p1 = 0.2 and
p3 = 0.3 respectively. As expected, in this case the points
are partitioned into disjoint regions around the three prefer-
ence points. 10 individuals cluster around the center where
the most samples emerge, 7 are associated with the prefer-
ence point on the left and 8 with the one on the right.

To promote individuals at the border of the objective
space, two exponential weight distributions can be added
up as in Fig. 3(c) where λ = 10 with p1 = 0.3 for the first
objective and p2 = 0.7 for the second.

5.2.5 Comparison Between Different Problems
In addition to ZDT1, the tests of the previous sections

were also carried out for other test problems, namely ZDT3
which has a discontinuous Pareto front shape, DTLZ2 and
ZDT6 (both non-convex). These three test problems are
much harder to optimize and neither HypE nor the reference
algorithms used were able to find Pareto optimal solutions.
The points are nevertheless clustered at regions with the
largest weight, see Figures 3(d), 3(e) and 3(f) where one
preference point with �μ = (0.7, 0.3) and σε = 0.1 is used.

5.3 High-Dimensional Spaces
For illustrative reasons in the previous section we applied

the sampling procedure to biobjective problems. The advan-
tage of the method, however, is that an arbitrary number
of objectives can be tackled. Figure 4 shows the Pareto
front and the solutions found by different algorithms on the

(a) (d)

(b) (e)

(c) (f)

Figure 3: These figures use the same visual elements
as Fig. 2 which explains them in its caption. In (a)
the same preference point is used as in the upper
plot of Fig. 2(d) but spending 10% of the samples on
a uniform distribution. Figure (b) shows the combi-
nation of three preference points, and Fig. (c) stress-
ing both the first and second objective. The figures
on the right show the distribution of the objective
vectors when applying the same preference point to
different test problems, i.e., (d) ZDT3 (only the pos-
itive part shown) (e) DTLZ2 and (f) ZDT6.

DTLZ2 problem with 3 objectives. While NSGA-II and
IBEA do not optimize any user defined preference, HypE
uses two preference points at �μ1 = (0.8, 0.2, 0.6) (p1 = 0.2)
and �μ2 = (0.2, 0.9, 0.5) (p2 = 0.8) with σε = 0.1 (shown as
ellipsoids). This leads to a cluster of points at each prefer-
ence point.

The Pareto front approximation on DTLZ2 with 7 ob-
jectives is depicted in Fig. 5 by means of parallel coordi-
nates plots for IBEA and HypE with σε = 0.05. The plot
for NSGA-II is omitted due to space limitations; it can be
noted that it looks similar to the one of IBEA except that
NSGA-II does not come as close to the Pareto front as IBEA,
i.e., the objective values are spread between 0 and 4.5. Both
IBEA and NSGA-II generate solutions at the boundary of
the objective space while only the former finds solutions near
the Pareto front. To get solutions near the center of the
Pareto front, HypE is applied with a preference point at
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Figure 4: Pareto front approximations of five runs (depicted by different symbols) for the 3-objective DTLZ2
test problem using NSGA-II (left), IBEA (middle), and HypE with two preference points displayed as ellip-
soids (right).

Figure 5: Distribution of points, plotted in parallel
coordinates, for the 7-objective DTLZ2 test problem
for IBEA (top) and HypE with two preference points
(solid black lines) and σε = 0.05 (bottom).

0.3780 · (1, . . . , 1). A second preference point is set at a ran-
dom location near the Pareto front8. The spread σε is set
for both preference points to 0.05 and the probabilities of
the mixture are set as 0.8 and 0.2 respectively leading to a
population of solutions grouped around the two preference
points (Fig. 5).

To investigate further whether HypE actually optimizes
the weight distribution used during search, two versions of
HypE are run in another experiment: the first version (de-
noted by HypEuni) uses a uniform weight distribution wuni

with reference point r = (3, . . . , 3), the second (HypEp) op-
timizes a weight distribution wp consisting of a combination
of two preference points at μ1 = (0.9, 0.1, 0.9, 0.1, . . . ) with
p1 = 0.3, σε = 0.05 and at μ2 = (0.1, 0.9, 0.1, 0.9, . . . ) with
p2 = 0.7, σε = 0.2. Both versions together with IBEA and
NSGA-II then optimized the DTLZ2 test problem with dif-
ferent numbers of objectives ranging from 2 to 25.

8�μ = (0.1377, 0.4131, 0.0688, 0.6196, 0.2065, 0.2754, 0.5507)

Table 1: Normalized hypervolume values using a
weight distribution wp that reflects two preference
points. The mean value and twice the standard de-
viation of 50 runs are listed. HypEp uses the weight
distribution function wp while HypEuni uses a uni-
form weight distribution.

NSGA-II IBEA HypEuni HypEp

2d 0.443±0.321 0.658±0.156 0.487±0.202 0.910±0.065

3d 0.480±0.353 0.956±0.015 0.917±0.035 0.996±0.005

5d 0.021±0.071 0.807±0.033 0.959±0.121 0.995±0.004

10d 0.215±0.311 0.688±0.121 0.964±0.049 0.999±0.002

25d 0.171±0.280 0.613±0.322 0.826±0.152 0.999±0.003

The Pareto front approximations for 50 independent runs
of both versions of HypE as well as of NSGA-II and IBEA
are then compared in terms of the weighted hypervolume
indicator with the weight distribution function wp, see Ta-
ble 1 where the hypervolume values are normalized to the
minimum and maximum value observed for the respective
number of objectives. In each case, HypEp outperforms sta-
tistically significant the other algorithms in terms of the hy-
pervolume indicator with wp—assessed by Kruskal–Wallis
and the Conover–Inman post hoc tests with a significance
level of 5% according to [8]. This indicates that applying the
weighted integration technique during search will generate
Pareto front approximations that score better on the corre-
sponding hypervolume indicator than using general purpose
algorithms with no user defined search direction.

6. CONCLUSIONS
This paper has described two procedures to approximate

the weighted hypervolume integration developed in [23] by
means of Monte Carlo sampling. This offers the possibility
to incorporate user preferences in a Pareto-compliant way,
where problems with an arbitrary number of objectives can
be considered. Two types of user preferences have been ex-
pressed by probability density functions that ease the fast
generation of samples—one stressing certain objectives and
the second emphasizing a preference point. Additionally,
any combination of the two is possible.

The combination of the sampling approach with HypE,
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an existing hypervolume based algorithm, has been applied
to various test problems. It has turned out by both visual
inspection and statistical tests that the generated Pareto
front approximations reflect the underlying weight distribu-
tion better than methods with no user defined preference.
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