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Abstract. In this paper, we elaborate how decision space diversity can be in-
tegrated into indicator-based multiobjective search. We introduce DIOP, the di-
versity integrating multiobjective optimizer, which concurrently optimizes two
set-based diversity measures, one in decision space and the other in objective
space. We introduce a possibility to improve the diversity of a solution set, where
the minimum proximity of these solutions to the Pareto-front is user-defined. Ex-
periments show that DIOP is able to optimize both diversity measures and that
the decision space diversity can indeed be improved if the required maximum
distance of the solutions to the front is relaxed.

1 Motivation

The task of evolutionary multiobjective optimization (EMO) includes to find a set of
Pareto-optimal solutions which is as diverse as possible to offer the decision maker a
good selection of solutions. Traditionally, diversity relates to objective values. Only re-
cently, multiobjective algorithms also aim at finding solutions that are diverse in the
decision space. Maintaining multiple solutions which cover different parts of the deci-
sion space, e.g. different designs, offers many advantages: first, it enables the decision
maker to choose among different designs with the same or at least equally preferable
objective values; second, it helps the decision maker to gather information about the
problem structure; and third, it can speed up search—for instance by improving explo-
ration and preventing premature convergence.

Many algorithms have been proposed to promote diversity of solutions also in the
decision space. However, the exact optimization goal is often far from clear. The Omni-
Optimizer [4] for example is based on a crowding distance, which prefers solutions
with large distance to the remaining solutions and alternates between the distance in the
objective space and in the decision space. In this setting, the optimal set of solutions
is not well-defined, nor is it easily possible to specify the desired tradeoff between
diversity in the objective space and diversity in the decision space.

We here make the following assumptions about the preference of a decision maker:

1. The decision maker is interested in a set of solutions.
2. Each solution in this so-called target population should be close to optimal, i.e.,

not “far” from the Pareto-front in objective space.
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3. The target population should cover large parts of the Pareto-front or regions nearby
and should therefore offer objective space diversity.

4. The target population should cover large parts of the decision space, i.e. offering
decision space diversity.

Diversity is inherently a property of sets of solutions rather than single solutions
as individual solutions can only be divers with respect to others. Therefore, optimizing
diversity is closely linked to the set-based view on multiobjective optimization as pro-
posed in SPAM [21] for example. The advantages of formalizing the optimization goal
by a set-based preference relation are twofold: A preference relation defines which of
two sets is preferred, and therefore, the optimization goal of the multiobjective search is
clearly defined. In addition, the convergence of algorithms using this preference relation
can be proven under certain conditions.

This study makes the following contributions to optimization considering diversity:

– A new diversity measure of sets in decision space is proposed which has not been
used in evolutionary multiobjective optimization before. This measure imposes less
strict requirements on the decision space properties than other commonly used di-
versity measures. An efficient procedure is presented to use this set diversity as a
selection criterion for solutions during the optimization process.

– We introduce the possibility of predefining a maximal distance to the Pareto-front,
that must not be exceeded by any solution. This mechanism enables a decision
maker to explore the tradeoff between diversity in decision space and solution op-
timality.

– We provide experimental results which compare the proposed method to the well-
established Omni-Optimizer [4] and which show the influence of the different pa-
rameters involved.

2 Background and Notation

Consider a multiobjective optimization problem with a decision space X and an objec-
tive space Z ⊆ Rn = {f(a) | a ∈ X}, where f : X → Z denotes a mapping from the
decision space to the objective space with n objective functions f = {f1, ..., fn} which
are to be minimized. An element a ∈ X of the decision space is also named a solution.

The underlying preference relation is weak Pareto dominance, where a solution
a ∈ X weakly dominates another solution b ∈ X , denoted a � b, if and only if solution
a is better or equal than b in all objectives, i.e., a � b iff f(a) 6 f(b) or equivalently, iff
fi(a) ≤ fi(b), ∀ i ∈ {1, ..., n}. Furthermore, we will use the notion of weak ε-Pareto-
dominance defined as a �ε b iff f(a) − ε 6 f(b). In other words, suppose that we
improve solution a in any objective by ε. Then a �ε b iff the improved solution weakly
dominates solution b.

Let X∗ ⊆ X denote the Pareto-optimal set, X∗ = {x |@a ∈ X : a � x ∧ x 6� a},
let T ⊂ X denote a target population of solutions, and let qX∗ : X → R≥0 measure
for each solution x ∈ X the distance qX∗(x) to the Pareto-optimal set X∗. Let Do(T ) :
2X → R≥0 and Dd(T ) : 2

X → R≥0 measure the diversity of a set of solutions T ⊆ X
in the objective space (Do(T )) and in the decision space (Dd(T )), respectively. Given
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this notation, the four optimization assumptions provided in Section 1 can be formalized
as follows:

1. We are interested in a target population of solutions T ⊆ X , |T | = µ, where µ
denotes its size.

2. Optimality: ∀t ∈ T : qX∗(t) ≤ ε, where ε is given bound on the optimality of
solutions in T .

3. Diversity in objective space: Determine T such that Do(T ) is maximal among all
possible target populations.

4. Diversity in decision space: Determine T such that Dd(T ) is maximal.

As a consequence, we are dealing with a bi-objective optimization problem on sets
of solutions. Given this setting, different problems arise:

– In order to determine qX∗(T ) one needs the knowledge of the Pareto-optimal set of
solutions X∗, which in general is not known.

– The problem of optimizing diversity in objective and decision space is a bi-objective
problem on the set of all possible populations. It is not clear which tradeoff the de-
cision maker is interested in and how to express these tradeoffs in an optimization
method.

– There are many choices for the distance and diversity measures qX∗ , Do and Dd.
Guidelines are necessary to choose appropriate measures (see the following Sec. 3).

3 Measuring Diversity–Approaches in Biology and in EAs

Typically, measures for the diversity of a set are based on the definition of a pairwise
distance between any two elements. Therefore, we assume that we are given a distance
measure d : X2 → R≥0 on the decision space. Here, we are often confronted with many
different classes of decision spaces, such as vectors, graphs, trees or even programs. In
order to be applicable to a large class of optimization domains, we would like to place as
few restrictions on the structure of the decision space as possible, i.e. we do not require
that X is an Euclidean space or that the triangle inequality is satisfied. Instead, we just
assume X to be a semimetric space, i.e., ∀a, b ∈ X: d(a, b) ≥ 0 (non-negativity),
d(a, b) = d(b, a) (symmetry), d(a, a) = 0 (identity of indiscernibles). Given such a
distance measure, we now would like to define a set diversity measure D : 2X → R≥0
which assigns to each subset of the decision space a real value, i.e. its diversity.

There are many possible interpretations and concepts of set diversity, i.e. how a
given number of solutions should be distributed such that they achieve an optimal set
diversity. In order to get a first insight, let us consider a very simple example. Figure
1 shows the optimized distribution of 100 points in a two dimensional Euclidean space
X = [0, 1]2 for two diversity measures, namely the sum of all pairwise distances and
the Solow-Polasky [12] measure. While the Solow-Polasky measure gives a grid-like
structure, the sum of pairwise distance measure distributes all 100 solutions into the
four corners. As a result, it appears that we need to define a set of formal requirements
for a useful diversity measure.
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Fig. 1. Best distributions found by the hill-climber, for the sum of pairwise distances diversity
measure (left) and the Solow-Polasky measure (right).

Measuring diversity of sets is much-discussed in biology, more specifically in the
field of biodiversity. Just as for the decision maker’s preference, no generally agreed-
on definition exists neither in biology nor in the field of evolutionary algorithms. In
the following, we discuss the most prominent classes of existing biodiversity measures
with respect to their applicability to EAs. In particular we consider the following three
requirements to a diversity measure D, first proposed by Solow and Polasky [12]:

P1: Monotonicity in Varieties The diversity of a set of solutions A should increase
when adding an individual b not yet in A, i.e.,D(A∪b) > D(A) if mina∈A d(a, b) >
0. This fundamental property assures that increased species richness is reflected by
the diversity measure [6].

P2: Twinning Diversity should stay constant when adding an individual c already in
A, i.e.,D(A∪c) = D(A). Intuitively, if diversity is understood as the coverage of a
space by a set of solutions [17], adding duplicates should not increase the coverage
and the chosen diversity measure should reflect that property.

P3: Monotonicity in Distance The diversity of set A should not decrease if all pairs
of solutions are at least as dissimilar (measured by d) as before D(A′) ≥ D(A), iff
d(a′i, a

′
j) ≥ d(ai, aj), ∀ai, aj ∈ A, a′i, a′j ∈ A′. So the more dissimilar solutions

are, the better.

One straightforward way of measuring diversity is based on the relative abundance
of each solution present in set A, e.g. [5]. But the degree of dissimilarity between in-
dividuals has no influence and the twinning property is not fulfilled. The second group
of diversity measures is based on taxonomy, e.g. [19], but unfortunately building the
taxonomic tree has a runtime which is exponential in the number of individuals. A very
simple way of aggregating the dissimilarity information into a diversity measure is to
sum up the values, D(A) =

∑
a∈A

∑
b∈B d(a, b) [6]. Shir et al. for instance used this

measure in their EA [11], while the Omni-Optimizer considers the distance d to the
closest neighbors of a solution. However, these measures do not meet the twinning re-
quirement and they promote having only two solutions with large distance duplicated
multiple times. A completely new approach has been presented by Solow and Polasky
[12]. Their measure is based on an utilitarian view on individuals, where the function
u : X → R≥0 defines the utility of any subset of solutions. This view of utility is
equivalent to the method proposed in a previous study of the authors [17], where in-
stead of utility the area covered by individuals has been considered. All three above
requirements are fulfilled.

In the evolutionary algorithm literature, decision space diversity has often been
used to prevent premature convergence. Examples of measures can be found in [16],
[10], [13], [18, 17], [4], [14], [20], [7] or [8, 4]. Most of these measures either require a
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Table 1. Comparison of different diversity metrics with respect to the three properties: mono-
tonicity in varieties (P1), twinning (P2), and monotonicity in distance (P3)

class method P1 P2 P3

relative abundance Simpson, Shannon, Berger-Parker no no yes

taxonomy clustering no yes no
Weitzman yes yes no

functions of distance sum yes no yes
crowding distance no no yes

utilitarian Solow-Polasky yes yes yes

specific structure of the decision space, they do not define a measure on sets, they make
assumptions about the Pareto-front or the problem landscape or they do not satisfy the
required properties.

Table 1 summarizes the different diversity measures in context of the three require-
ments P1, P2 and P3. As can be seen, only the measure by Solow-Polasky satisfies all
three requirements, so we will apply this measure in the experimental study (Sec. 5).
However, the algorithmic framework presented in this paper is also compatible with
other measures.

4 Optimizing Diversity–A Novel Set-Based Algorithm

Now that we have presented some possibilities to measure diversity, be it to determine
Do(A) or Dd(A), the decision maker’s preference 3 and 4 stated in Sec. 1 can be for-
mally expressed. Optimizing those indicator-based set preferences can be accomplished
within the SPAM framework [22]. There remain, however, a number of issues to be re-
solved which we are going to tackle with DIOP (Diversity Integrating Optimizer).

As the Pareto-optimal set X∗ in general is unknown, we propose using a helper set,
called the archive A, which approximates X∗. We therefore have two concurrent EAs,
one which optimizes the target population and one which optimizes the archive popu-
lation. This offers the advantage that the quality constraint (decision maker preference
2, Sec. 1) continuously tightens as the archive population improves. In order to benefit
from one another, the two sets can exchange solutions, therefore improving the diver-
sity in the archive and producing more solutions that satisfy the quality constraint in the
target. This is useful as experiments have indicated that considering diverse solutions
might speed up search for some problems [17].

Having an approximation A of the Pareto-optimal set X∗, a distance metric qA has
to be defined. We here propose to use�ε to define the distance as the smallest ε to reach
ε-dominance of any solution in A, i.e.,

qA(x) := min{ε | ∃y ∈ A : x �ε y} . (1)

As the decision maker is only interested in solutions not exceeding a predefined dis-
tance ε to the Pareto-front, the diversity measures of an arbitrary set P is only calculated
for those solutions P ε ⊆ P not exceeding the distance ε from the front approximation
A, P ε = {p ∈ P | qA(p) ≤ ε}.
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Algorithm 1 DIOP algorithm. Takes a parameter ε, an archive size µa, a target size µt,
and a decision space X . Returns the optimized target set.

function DIOP(ε, µa, µk)
A = {x1, ..., xµa}, xi ∈ X /* randomly initialize archive */
T = {x1, ..., xµt}, xi ∈ X /* randomly initialize target */
while stopping criterion not met do
A′ = variate(A ∪ T ) /* generate archive offspring */
A′′ = archiveSelect(A ∪ A′ ∪ T, µa) /* select µa new individuals */
/* Only use new archive if itsDo value is better */
ifDo(A′′) > Do(A) then
A = A′′

end if
T ′ = variate(A ∪ T ) /* generate target offspring */
T ′′ = targetSelect(A, T ∪ T ′ ∪ A, µt, ε) /* select µt new individuals */
/* Only use new target if itsDd value is better */
ifG(T ′′) > G(T ) then
T = T ′′

end if
end while
Return T

end function

In contrast to the framework of SPAM [22], DIOP needs to maximize two indicators
Do and Dd instead of one. Therefore, two sets can no longer be unambiguously com-
pared in general, as we are dealing with a biobjective problem. Many other studies have
implicitly tackled this tradeoff, however, to the best of the authors’ knowledge, none
of these approaches explicitly set the tradeoff, but use subpopulations [9, 16], adapt
mutation [18], use the diversity to the best single objective solution [10], use the con-
tribution to the set diversity [13], use nondominated sorting [14], use a sequence of
indicators [22], alternate between decision space and objective space diversity [4], use
an unweighted sum of both measures [11], use diversity as an additional objective [15],
adapt the variation process [20] or integrate diversity into the hypervolume indicator
[17].

In this study, we propose to consider a weighted sum of the two diversity indicators:

G(T ) := wo ·Do(T )+wd ·Dd(T ), |T | = µ with qA(t) ≤ ε ∀t ∈ T,wo+wd = 1 (2)

This enables a flexible tradeoff between the two diversity indicator values Do and Dd

by using different weights.
The DIOP algorithm simultaneously evolves two population, namely the archive A

which approximatesX∗, and the target population T which maximizesG(T ). Offspring
is always generated from the union of both sets, whereas the selection procedure uses
different indicators for the archive and target. In each generation, a selected subset is
only accepted if the corresponding indicator value is larger than the one of the parent
population. The pseudocode of the proposed algorithm is shown in Algorithm 1.

The function A′′ = archiveSelect(A,µa), selects µa solutions A′′ from a set A.
The selection goal is to maximize Do(A

′′). The function P ′ = variate(P,m) gener-
atesm offspring P ′ from a given set P . The method T ′ = targetSelect(A, T, µt, ε) se-
lects µt solutions T ′ from set T . The goal here is to maximizeG({t ∈ T : qA(t) ≤ ε}).
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5 Experimental Results

In this section, two main questions are investigated: first, how do the parameters of
DIOP, i.e. ε and wo, influence the obtained target population in terms of the two di-
versity measures Dd and Do? Second, we compare DIOP on two test problems to the
Omni-Optimizer [4] to assess its performance.

Experimental Setup: The method variate(P,m) selects m/2 random pairs of so-
lutions from P to generate the offspring population. These pairs are then recombined
by the SBX crossover operator [2] and mutated by adding a new normally distributed
value with standard deviation 1/ηm. Solow-Polasky with ηSP = 10 is used to measure
the decision space diversity Dd. To determine the objective space diversity Do, the hy-
pervolume indicator is used with iterative greedy environmental selection as described
in [22]. To perform the target selection targetSelect(T, n) according to G(T ) (Eq. 2),
the following wide-spread greedy strategy is used: Starting with an empty set T ′ = {},
iteratively the solution ti ∈ T is added to T ′ which leads to the largest indicator increase
∆tiG(T

′) := wo(Do(T
′∪ ti)−Do(T

′))+wd(Dd(T
′∪ ti)−Dd(T

′)) Since determin-
ing the diversity measure of Solow-Polasky is costly (involving matrix inverses [12]),
we use the following approximation: Dd(T

′∪ ti)−Dd(T
′) ≈ mina∈T ′\ti d(ti, a), i.e.,

we take the utility lost with respect to the closest individual as the overall utility loss.
Influence of ε and wo: To assess the influence of the parameters ε and wo, DIOP is

run on DTLZ2 [3] with 3 objectives and d = 7 decision variables. DTLZ2 was chosen
as it is a well-known problem, its results are easy to interpret as the connection between
decision space values and objective space values is known, and the true Pareto-front
is known. Note though that DIOP can also be run on real-world problems with more
complex decision spaces that are not metric. The variation parameters are set according
to [3] with a crossover probability of 1 with ηc = 15 and a variable exchange probability
of 0.5, as well as a mutation probability of 1/d with ηm = 20. We chose the archive
and target size to be 50 and run the algorithm for 1000 generations. The parameter ε
takes the values {0, 0.0865, 1}, the weights wo = {0, 0.7692, 0.9091, 0.9677, 1} are
logarithmically spaced with wd = 1 − wo. The results are shown in Fig. 2 on the left
hand side.

It can be seen that with an increasing ε and an increasing wd value, the achievable
diversity increases, while the hypervolume decreases. This illustrates how the tradeoff
between hypervolume and decision space diversity can be set by the user. Figure 3
shows the non-dominated solutions for one run with ε = 0 and wo = {0, 0.7699, 1}.
The higher wo is, the more solutions lie on the Pareto-front (50/8/1 out of 50 solutions
lie on the front for wo = 1/0.7699/0, respectively). The dominated solutions do not
contribute to the hypervolume and are distributed within the quality constraint set by ε
and A in such a way that they optimize diversity. This indicates how the tradeoff is set
in practice: A subset of the final target population is distributed on the Pareto-front and
optimizes the hypervolume, whereas the remaining solutions optimize decision space
diversity. The number of solutions that optimize the hypervolume increases with wo.

Comparison to the Omni-Optimizer While the Omni-optimizer uses the same
SBX crossover operator as DIOP, it uses an adaption of polynomial mutation with ηm =
20 [4] instead of the Gaussian mutation employed by DIOP.
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Fig. 3. Non-dominated solutions of one DTLZ2 run for three different weights.

As the first test problem we use the Omni-Test as described in [11] with 5 deci-
sion variables. The Omni-Test was chosen because it allows for an additional intuitive
problem-specific diversity measure, which exploits the fact that the Pareto-optimal so-
lutions are distributed over a total of 3d clusters, where d is the number of decision
variables. Therefore, the additional diversity measure can be defined as the number of
clusters found by the algorithm. For optimization, we use the parameters from [11] with
a population size of 50, 1000 generations, and ε = 0. As we use an archive of size 50
in addition to the target of size 50, we require more fitness evaluations than the Omni-
Optimizer. In order to compensate for that, the Omni-Optimizer is run for twice as many
generations, i.e. 2000. For the variation operators, we use the parameters from [4] with
a crossover probability of 0.9 with ηc = 1, where the variables are exchanged with a
probability of 0.5, and a mutation probability of 1/n with ηm = 1. Each algorithm was
run 15 times with different random seeds. To test the two algorithms for statistically sig-
nificant differences, the Kruskal-Wallis with post-hoc Conover-Inman procedure [1] is
applied with a significance level of 5%. The results are given in Table 2. It can be seen
that DIOP achieves significantly better hypervolume values than the Omni-optimizer
for all weight combinations, even if only decision space diversity is optimized. This is
due to the fact that the solutions, while optimizing decision space diversity, must not be
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Hypervolume Diversity (Pairs) Diversity (Solow) Found Clusters
DIOP wo = 0.00 30.04± 0.10+ 0.63± 0.05− 46.7± 2.0+ 33.2± 5.2+

DIOP wo = 0.77 30.21± 0.03+ 0.64± 0.05− 47.9± 2.3+ 37.3± 5.2+

DIOP wo = 0.91 30.25± 0.03+ 0.66± 0.06− 48.7± 0.9+ 39.9± 3.7+

DIOP wo = 0.97 30.31± 0.02+ 0.65± 0.06− 48.5± 1.0+ 39.5± 4.0+

DIOP wo = 1.00 30.42± 0.00+ 0.43± 0.11− 16.1± 2.5− 9.8± 2.6−

Omni 29.94± 0.05 0.70± 0.04 34.7± 1.1 23.8± 1.4

Table 2. Omni-Test problem: Four measures, all to be maximized. Statistically significantly bet-
ter/worse results of DIOP compared to the Omni-optimizer are marked with a +/−.

dominated by any archive solutions (ε = 0). Even though DIOP finds twice as many
clusters as the Omni-Optimizer (except for wo = 1, i.e. when the decision space diver-
sity is not optimized at all), its pairwise distance measure is significantly worse than the
Omni-Optimizers. This indicates that the pairwise distance measure does not accurately
reflect the number of found clusters. DIOP’s Solow-Polasky values, on the other hand,
are significantly better than the Omni-optimizer’s, as expected.

As a second test problem, we selected DTLZ2 with 3 objectives and 7 decision vari-
ables. In this test problem, the last 5 decision variables of a Pareto-optimal solution are
equal to 0.5, whereas the first two variables define its location on the front. Solutions
with values that differ from 0.5 in the last 5 variables are not Pareto-optimal. The popu-
lation sizes and generation numbers are the same as for the Omni-Test problem. DIOP
was run for ε = {0, 0.0856, 1}, with the weights set towo = 0.9677,wd = 0.0333. The
algorithms were again run 15 times with different seeds. The results are shown in Fig-
ure 2 on the right hand side. At each point in the figure, all solutions that are within the
distance given on the x-axis from the true Pareto-front are used to calculate the decision
space diversity Dd, which gives the corresponding y-axis value. The results show that
the Omni-Optimizer has problems approximating the Pareto-front. Its diversity remains
close to zero until about a distance of 0.5 from the front, which is due to the fact that it
finds only few solutions that are closer than 0.5 to the true front. The DIOP population
reaches its maximum diversity at a distance of around 0.2 from the front, which is an
effect of the fact that not the true front but an approximation thereof is used during the
optimization. For ε = 0 and ε = 0.0856, DIOPs population has a better diversity than
the Omni-optimizer no matter what distance from the front is considered. For ε = 1.0,
the solutions seem to be located in a distance interval between 0.5 and 1.2 from the
front, which indicates that solutions further away from the front are more diverse than
those close to the front. This matches the DTLZ2 problem; the further the last 5 deci-
sion variables are from their optimal value of 0.5, the better the diversity and the larger
the distance to the front gets.

6 Conclusions

In this paper we investigate how decision space diversity can be integrated into indicator-
based search. Experiments show that the algorithm can generate various tradeoffs be-
tween objective and decision space diversity, adjustable by the user. Furthermore, it
is shown that the algorithm performs well when compared to the well-known Omni-
Optimizer. In the future, DIOP should be tested on more complex, non-Euclidean prob-
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lems. Also, it could be compared to other state-of-the-art multiobjective optimizers that
do not optimize diversity, in order to quantify the increase in diversity that can be gained
from using DIOP.
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