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[ FAST HYPERVOLUME SAMPLING ALGORITHM

Goal: Multiobjective Optimization

In the last decades, there has been a growing interest
in developing evolutionary algorithms for multiobjective
optimization problems. Many variants proposed in the
last years make use of special indicator functions that ex-
plicitly define the optimization goal—independent from
the algorithm itself. The hypervolume indicator, first in-
troduced by Zitzler et al. as the ‘size of the space
covered’, has proven to be highly useful for search. This
is mainly due to the following feature: whenever one Pa-
reto-set approximation completely dominates another
approximation, the hypervolume of the former will be

greater than the hypervolume of the latter.

Unfortunately, the calculation of the hypervolume mea-

sure is computationally very demanding,
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Figure 2: Performance of an evolutionary algorithm using the sampling strategy

in comparison with NSGA-Il, SPEA2 and IBEA
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Approach: Monte-Carlo Sampling

Instead of calculating the hypervolume measure, it can

be approximated by Monte-Carlo sampling. We pro-

pose a technique designed to be used in the selection

process of an evolutionary algorithm which allows sub-

stantial speedups. In order to sample the contribution

of z, three steps are necessary:

| A sampling space has to be defined, which
is as thight as possible (Figure |)
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Figure |: The shaded area shows the contribution of point z*. By drawing samples from the
sampling rectangles, this contribution can be approximated.
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[ APPLICATIONS - PLACING WIRELESS SENSOR NODES

Introduction: Wireless Sensor Nodes
Wireless Sensor Nodes (VWSN) are a new form of per-
vasive and distributed computing infrastructure, deeply
embedded into the environment. Providing remote ac-
cess to the sensing devices, VSN technology is a radi-
cal innovation for many diverse application areas such
as environmental monitoring, structural moni-
toring, or event detection. Moni-
toring phenomena in a given
environment requires cover-
age of the area with the sens-

ing devices.

Problem Statement: Placing Sensor Nodes

How many wireless sensor nodes should be used and
where should they be placed in order to cover a certain
area with as few nodes as possible but still providing re-
liable communication paths from each node to a data
sink? This is a difficult question to answer for a decision
maker due to the conflicting objectives of deployment
costs (number of nodes used) and wireless transmission

reliability:
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Approach: Using an evolutionary algorithm

Here, we address this problem using a multiobjective
evolutionary algorithm (MOEA) which allows to identify
the trade-offs between low-cost and highly reliable de-
ployments. The algorithm finds a set of good solutions,
o this

from which the decision maker can choose from.

end, various components are designed:

e Iwo objective functions based on a WSN deploy-
ment model.

e A representation of the WSN network, allowing
varying number of wireless sensor nodes.

e A crossover operator that combines two WSN de-
ployments

e A mutation operator based on Voronoi diagrams.
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Figure |: The number of sensor nodes deployed and the reliability of transmis-
sion form two conflicting goals

To determine the probability, that the contribution of a

individual a is smaller than the contribution of individu-
al b, one can use the confidence intervals proposed by

Agresti and Coull:
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Experimental Results

Figure 2 shows a comparison of state of the art algo-
rithms to an evolutionary algorithm based on the nov-
el sampling strategy. The number of samples has to be
chosen carefully: If the number is to small, the accura-
cy of environmental selection suffers and the algorithm
does not converge well. On the other hand, if to many
samples are used, the umber of generations that can be
evaluated given a constant time budget is too small. The
latter problem affects the adaptive strategy to a lesser
extend, since the desired accuracy is reached mostly be-
he best

fore the number of samples exceeds its limit.
number of samples is about 10,000 samples.
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Figure 2: One deployment of 60 sensor nodes that monitor an outdoor scenario,
found by the evolutionary algorithm.

Results

As Figure | shows, the MOEA finds a set of different
solutions, using between |5 and 50 nodes and achiev-
ing different transmission error rates. The orange points
correspond to the Pareto-optimal solutions. Figure 2
shows one WSN network found for a different deploy-

ment scenario.

ﬂ{eference

M. Woehrle, D. Brockhoff, T. Hohm, and S. Bleul-
er. Investigating Coverage and Connectivity Trade-offs
in Wireless Sensor Networks: The Benefits of MOEAs.

In Conference on Multiple Criteria Decision Making
(MCDM 2008). Springer

Johannes Bader, Matthias Woehrle, and Eckart Zitzler ETH Zurich, 8092 Zurich, Switzerland, firstname.lastname@tik.ee.ethz.ch, http://lwww.tik.ee.ethz.ch/sopl/

FONDS NATIONAL SUISSE
SCHWEIZERISCHER NATIONALFONDS
FONDO NAZIONALE SVIZZERO

Swiss NATIONAL SCIENCE FOUNDATION

Kalyanmoy Deb, and Dhish Kumar Saxena Indian Institute of Technology Kanpur, Kanpur, PIN 208016, India, http://lwww.iitk.ac.inlkangall




