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APPLICATIONS - PLACING WIRELESS SENSOR NODES

Fast hypervolume Sampling Algorithm

Introduction: Wireless Sensor Nodes
Wireless Sensor Nodes (WSN) are a new form of  per-
vasive and distributed computing infrastructure, deeply 
embedded into the environment. Providing remote ac-
cess to the sensing devices, WSN technology is a radi-
cal innovation for many diverse application areas such 

as environmental monitoring, structural moni-
toring, or event detection. Moni-

toring phenomena in a given 
environment requires cover-

age of  the area with the sens-
ing devices. 

Problem Statement: Placing Sensor Nodes
How many wireless sensor nodes should be used and 
where should they be placed in order to cover a certain 
area with as few nodes as possible but still providing re-
liable communication paths from each node to a data 
sink? This is a difficult question to answer for a decision 
maker due to the conflicting objectives of  deployment 
costs (number of  nodes used) and wireless transmission 
reliability:

Approach: Using an evolutionary algorithm
Here, we address this problem using a multiobjective 
evolutionary algorithm (MOEA) which allows to identify 
the trade-offs between low-cost and highly reliable de-
ployments. The algorithm finds a set of  good solutions, 
from which the decision maker can choose from. To this 
end, various components are designed:

Two objective functions based on a WSN deploy-•	
ment model. 
A representation of  the WSN network, allowing •	
varying number of  wireless sensor nodes.
A crossover operator that combines two WSN de-•	
ployments
A mutation operator based on Voronoi diagrams.•	

Results
As Figure 1 shows, the MOEA finds a set of  different 
solutions, using between 15 and 50 nodes and achiev-
ing different transmission error rates. The orange points 
correspond to the Pareto-optimal solutions. Figure 2 
shows one WSN network found for a different deploy-
ment scenario. 

Goal: Multiobjective Optimization
In the last decades, there has been a growing interest 
in developing evolutionary algorithms for multiobjective 
optimization problems. Many variants proposed in the 
last years make use of  special indicator functions that ex-
plicitly define the optimization goal—independent from 
the algorithm itself. The hypervolume indicator, first in-
troduced by Zitzler et al. as the ‘size of  the space
covered’, has proven to be highly useful for search. This 
is mainly due to the following feature: whenever one Pa-
reto-set approximation completely dominates another 
approximation, the hypervolume of  the former will be 
greater than the hypervolume of  the latter. 

Unfortunately, the calculation of  the hypervolume mea-
sure is computationally very   demand ing , 
and current algorithms are expo-
nential in the number 
of  objectives.

 

 

Approach: Monte-Carlo Sampling
Instead of  calculating the hypervolume measure, it can 
be approximated by Monte-Carlo sampling. We pro-
pose a technique designed to be used in the selection 
process of  an evolutionary algorithm which allows sub-
stantial speedups. In order to sample the contribution 
of  z, three steps are necessary:

A sampling space has to be defined, which 1.	
is as thight as possible (Figure 1)
A number of  samples is drawn to estimate 2.	
the contribution of  each point
Statistical tests are performed to determine 3.	
the number of  samples needed to obtain a 
reliable decision

To determine the probability, that the contribution of  a 
individual a is smaller than the contribution of  individu-
al b, one can use the confidence intervals proposed by 
Agresti and Coull:

Experimental Results
Figure 2 shows a comparison of  state of  the art algo-
rithms  to an evolutionary algorithm based on the nov-
el sampling strategy. The number of  samples has to be 
chosen carefully: If  the number is to small, the accura-
cy of  environmental selection suffers and the algorithm 
does not converge well. On the other hand, if  to many 
samples are used, the  umber of  generations that can be 
evaluated given a constant time budget is too small. The 
latter problem affects the adaptive strategy to a lesser 
extend, since the desired accuracy is reached mostly be-
fore the number of  samples exceeds its limit. The best 
number of  samples is about 10,000 samples.
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Figure 1: The shaded area shows the contribution of  point z*. By drawing samples from the 
sampling rectangles, this contribution can be approximated.

1·106 3·105 1·105

1·107

3·106

3·104

3·103

1·104

1·103

3·102

1·102 32

NSGA-II
SPEA2

IBEA

100

hy
pe

rv
ol

um
e 

(to
 b

e 
m

in
im

iz
ed

)

1·103 2·103 5·103 1·104 2·104

10

number of generations
Figure 2: Performance of  an evolutionary algorithm using the sampling strategy 
in comparison with NSGA-II, SPEA2 and IBEA
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Figure 1: The number of  sensor nodes deployed and the reliability of  transmis-
sion form two conflicting goals

Figure 2: One deployment of  60 sensor nodes that monitor an outdoor scenario,  
found by the evolutionary algorithm.
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