
Selfishness in Wireless
Medium Access

Johannes Bader

diploma thesis

Semester: 10
Betreuer: Thomas Moscibroda
 Pascal von Rickenbach
Abgabedatum: 10.10.2006

Contents

1 The ALOHA protocol 7
1.1 Description . 7

1.1.1 History . 7
1.1.2 Protocol description . 7
1.1.3 ALOHAnet . 7

1.2 Mathematical models . 9
1.2.1 Distribution of the transmission attempts . 9
1.2.2 Processing packet when in the idle state . 9
1.2.3 Buffer Model . 9

Description . 9
Markov chain . 10

Decrease in the number of occupied buffer space 10
Steady occupied buffer space . 11
Increase in the number of occupied buffer space 11

The effective sending probability qeff . 12
Accuracy of the calculations . 13

λ = 0.01: . 13
λ = 0.038: . 14
λ = 0.1: . 14
Conclusion . 16

1.3 Efficiency of ALOHA . 16
1.3.1 Throughput . 16

Pure ALOHA . 16
Slotted ALOHA . 17

1.3.2 Delay . 18
Pure ALOHA . 18

Using the binomial model . 18
Using the Poisson model . 18

Slotted ALOHA . 19
Using the binomial model . 19
Using the Poisson model . 19

1.4 Group of unfair users . 19
1.4.1 Procedure . 19
1.4.2 Detection of unfair users . 21

1.5 Estimating the number of participants . 21

3

CONTENTS

1.5.1 All users conforming to the rules . 21
1.5.2 A group of unfair users . 24
1.5.3 Repeated estimation . 25

2 Adaptive sending probabilities 27
2.1 Procedure . 27
2.2 Throughput reached . 27
2.3 Cannibalism . 27

2.3.1 Reasons . 27
2.3.2 Detection . 29
2.3.3 Countermeasure . 29

3 ALOHA with induced regularity 33
3.1 Version 1: Transient . 33

3.1.1 Procedure . 33
Idea . 33
Name of the protocol . 33
Protocol description . 33

3.1.2 Mathematical model . 34
Choice of the sending probability . 34
Dividing into two states . 34
Markov chain . 34

States . 34
Transition probabilities . 34

3.1.3 Throughput . 36
3.1.4 Delay . 36

Mathematical model . 36
Delay shares . 38

Calculation of do . 38
Calculation of d+ . 38
Calculation of d− . 38

Total delay . 39
3.2 Version 2: Steady . 39

3.2.1 Procedure . 39
Idea . 39
Name of the protocol . 39
Protocol description . 40

3.2.2 Mathematical model . 40
Markov chain . 40

States . 40
Transition probabilities . 40

3.2.3 Throughput . 41
3.2.4 Delay . 42

3.3 Evaluation . 43
3.3.1 Long term behavior . 43

Case P ≥ N . 43

4

CONTENTS

Absorbing Markov chains . 43
Probability of absorption . 43
Time to absorption . 43

Case P < N . 44
Second protocol version . 44
First protocol version - ergodic Markov chain 45

3.3.2 Throughput . 45
Case P ≥ N . 45

Course . 45
Long term behaviour . 45

Case P < N . 45
First protocol . 45
Second protocol . 47

3.3.3 Delay . 49
Case P ≥ N . 49

Delay of protocol version 1 and 2 . 49
Delay of the conventional ALOHA–protocol 49
Comparison . 50

Case P < N . 50
First protocol . 50
Second protocol . 50

3.3.4 Comparison with the conventional ALOHA . 51
Transient protocol . 51

Throughput . 51
Delay . 51

Steady protocol . 51
Throughput . 51
Delay . 51

3.4 Optimal period length P . 53
3.5 Employment of the variable-q-strategies by unfair participants 54

3.5.1 Employment of the transient protocol . 54
Markov chain . 54
Throughput . 55
Delay . 56

3.5.2 Employment of the steady protocol . 56
Markov chain . 56
Throughput . 57
Delay . 58

4 Cost models 59
4.1 Two simple introductive examples . 59

4.1.1 Transmission costs . 59
4.1.2 Delay costs . 59

4.2 Delay dependent sending probability . 60
4.2.1 Variable names . 60
4.2.2 Calculations . 61

5

CONTENTS

4.2.3 Special relations . 62
4.2.4 General cost model . 62

First cost model . 62
Second cost model . 62

4.3 Results . 62
4.3.1 Analyzed sending probabilities . 62

Flat . 63
Peaks . 63
Exponential . 63

4.3.2 Evaluation . 64
Flat model . 65

First cost model . 65
Second cost model . 65
Delay . 65

Peak model . 65
First cost model . 65
Second cost model . 66
Delay . 66

Exponential model . 66
First cost model . 67
Second cost model . 67
Delay . 67

4.3.3 Summary . 67
First cost model . 68
Second cost model . 68
Delay . 69

Conclusions and Summary 71

Bibliography 73

6

Chapter 1

The ALOHA protocol

1.1 Description

1.1.1 History

ALOHA - which means "hello" in the Hawaiian
language - is a protocol from the area of the com-
puter networks and describes a media access con-
trol method (therefore being part of second layer
of the OSI model [Tan03]), which means the pro-
tocol allows multiple participants to use the same
shared medium for transmission. The protocol was
developed by Norman Abramson at the university
of Hawaii in 1970 for the so called ALOHAnet (see
section 1.1.3). It was originally meant for wire-
less networks but his core concept is the base for
wire communication systems such as the very pop-
ular Ethernet.

1.1.2 Protocol description

The ALOHA–protocol is carried out as follows
[Tan03], [vM06]:

Algorithm 1 ALOHA-protocol
The users can send whenever they have new data
to dispatch.
If collisions occur the user waits for a random
amount of time and resends the packet thereafter.
He repeats this step as long as the packet collides.

That a sent package collided, the station either
finds out by interception of the channel or, if this
is not possible, by a feedback from a central hub
(in the ALOHAnet, the nodes listened to see if the

message they sent was sent back to them by the
hub located at the university. If they never got the
packet back this meant it collided with an other
packet). All packets are of the same length since
the throughput is maximized this way. As soon as
more than one participant uses the channel, a colli-
sion occurs and all sent packets have to be dropped.
It is sufficient on that occasion if the last bit of one
of the packets overlaps with the first bit of an other
packet - the checksum can only distinguish between
collision and successful transmission.

Each user can be in three states, shown in fig-
ure 1.1 :

Idle: The user doesn’t have any data he wants to
send. As soon as a packet is generated and
available, he sends it.

Send: The user has sent a packet and waits for the
feedback. If the packet was transmitted suc-
cessfully, he goes to the state idle thereafter.
If, on the other hand, a collision occurred he
changes to the blocked state.

Blocked: A collision occurred so the user holds
sending for a random amount of time before
retrying to transmit the collided packet.

1.1.3 ALOHAnet

The so called ALOHAnet connected many is-
lands around Hawaii with the university of Hon-
olulu.

Figure 1.2 shows the setting: Five Islands A to
E and the University U want to communicate with

7

1. THE ALOHA PROTOCOL

Figure 1.1. This state diagram shows the

course of the ALOHA-protocol. As long as no

packet is available, the user waits in the idle
state. As soon as a packet is generated, the

player tries sending it. Upon success, he goes

back to the idle state. When the packet has

collided on the other hand, he changes to the

blocked state and waits a random amount of

time until trying to the send packet again.

each other. All Islands, the nodes of the system, can
send data any time they want using packet radio,
but as soon as at least two of them send at the same
time, the signals are ruined, since all nodes use the
same frequency.

Two avoid the problem, a user occupies the ra-
dio for a very long time, the data had to be broken
down to small packets. The network is star-shaped,
which means, all users have to send their data to the
central hub located at the university, which redirects
the data to the final destination. The networks used
two frequency channels:

Broadcast channel This channel was used to
transmit the packets from the central hub (U in
the example) back to the nodes (A-E). Using a
dedicated channel for these messages guaran-
tees, that no feedback is ruined or lost due to
collisions.

Random access channel This channel was used to
transmit the data from the nodes (A-E) to the
central hub at the university (U).

U

A

B

C

D

E

Figure 1.2. Shows the star-shaped arrangement

of the participants in the ALOHAnet. The island

A to E want to communicate with each other,

they send their data first to the central hub lo-

cated at the university U, which thereafter redi-

rects the packet to the final destination. The

central hub acknowledges every packet it re-

ceives using a dedicated channel. As soon as

more than one node sends (A and B in the fig-

ure), a collision occurs and both packets are

lost.

.

8

1.2. MATHEMATICAL MODELS

Figure 1.3. Course of the simplified ALOHA pro-

tocol when assuming binominal transmission

attempts and infinitly large buffers. Each par-

ticipant has data he wants to transmit anytime

and sends in a time interval T with probability

q, either a new packet or one that collided in a

previous attempt.

The nodes used modems with a baud rate of 9600
symbols per second and packets 146 bits long, con-
taining 80 bits payload.

1.2 Mathematical models

In this section the mathematical models to calcu-
late the characteristics of the ALOHA protocol are
given.

1.2.1 Distribution of the transmission attempts

For the following calculations, two simplified
models are considered:

Model 1 (binominal): There are N participants
taking part in the protocol. Every one of them
has always a packet that he wants to send any-
time. That means, he generates at least as
many packets as he transmits and the buffer
size is sufficiently large. (We will explain the
buffer model in greater detail in section 1.2.3).
Let the probability, that a specific users sends
within the time interval T when he has a packet
pending be q. This model is used for example
in [vM06]. .

Model 2 (poisson): The number of participants is
very large (N � 1) and the number of
transmission-attempts during the time T is a

Poisson process with mean value G, called the
offered load. This model is very common (for
example used by [Tan03]).

1.2.2 Processing packet when in the idle state

If a user is at the states send or blocked , further
incoming packets are either buffered of discarded,
depending on the buffer space available (see sec-
tion 1.2.3 for an in depth analysis of the impact of
buffer size). We make use of the following models
throughout the paper:

No buffer space No packets are buffered and
hence discarded when the users is not in the
idle state. After the player did send a packet
successfully, he has to wait until a new one is
generated. This model is used in section 4.2
on page 60.

Finite buffer space The packets are buffered. If
all of the buffer size B is used, the newly gen-
erated packets are discarded. If the buffer is
empty, the user does not send any more pack-
ets. This model is analysed in section 1.2.3.

Infinite buffer space We assume, every player has
an sufficiently large buffer and generates
enough packet so he has data he wants to trans-
mit at every time instance. He does send with
probability q, regardless of whether the packet
to be transmitted is a newly generated one or a
packet that collided in a previous attempt. This
model is the most frequently used throughout
the paper.

Figure 1.3 illustrates the binomial model when
using infinite buffer space.

1.2.3 Buffer Model

Description

In this section we want to examine the impact of
a buffer of size B which was used in the previous
section 1.2.2. In contrast to many papers and books
(for example [vM06] on page 220) we don’t restrict
the calculations to the case B = 1, but try to find

9

1. THE ALOHA PROTOCOL

d1
s1

{i12, i13, . . . , i1B}

0 1 2 33 B-1B-1B-1B-1 B· · ·

Figure 1.4. Illustration of the Markov chain used

in section 1.2.3. There are three transition

types possible: i,d and s. Of the latter two only

one exists per state, denoted by dS and sS re-

spectively (S being the origin of the transition).

On the other hand multiple transitions of type i
are possible for each state, denoted by iST (T
representing the target state of transition).

a Markov chain that approximates the general case
B > 1.

We assume the following points:

Packet arrival rate: Each participant generates
packages, that he likes to transfer over a shared
channel. The arrival of newly generated pack-
ets is modeled by a Poisson process with rate
λ.

Buffer space: Each user has a buffer of length B
in which he can store packets that wait to
be transmitted. The packet, which should be
transferred at the moment, occupies one buffer
space as well. As soon as the buffer is filled up,
all packets arriving afterward are discarded.

The newly generated packets arrive before the
users transmits packets. This fact matters
when the buffer is empty or filled up (see for
example equations (1.4b) and (1.4c)).

Protocol: All participants use the slotted ALOHA-
protocol, so in every time slot they send with
probability q - apart from the case of course,
no packet is available.

The average number of packets generated per
time slot, thus the rate of the Poisson process, is
equal to λ. The random variable A counts the num-

ber of generated packets per time slot and is dis-
tributed as follows:

Pr [A = k] =
λk

k!
e−λ (1.1)

Since each player behaves the same way we fo-
cus on player number 1 in the following. From the
remaining N − 1 users only the information how
many players want to send a packet is needed. We
denote this number by N (n)

active, where n stands for
the current time slot. Hence, when user 1 sends af-
ter n time slots, the probability his packet does not
collide is equal to:

Pr [no collision|player 1 sending](n) = (1− q)Nactive

=: P̂ (n)
suc (1.2)

To determine the numberNactive we need to work
out a Markov chain as explained in the following
section.

Markov chain

The number of occupied buffer space S is inter-
preted as states of a Markov chain. The chain there-
fore consists of B + 1 states, state 0 representing
the circumstance no packets are present and state B
representing a completely filled buffer. Figure 1.4
shows the resulting Markov chain [GS03].

In the course of the following sections we give
the transition probabilities of the Markov chain.

Decrease in the number of occupied buffer space
The transition dS means, the occupied buffer space
decreases, which only happens when no packet is
newly generated while the users is successful in
transferring a packet. This number depends on time
and is given by the following product:

d
(n)
S = Pr [A = 0] · qP̂ (n)

suc ∀ 0 < S < B

with (1.1) we get

= e−λ · qP̂ (n)
suc ∀ 0 < S < B (1.3a)

10

1.2. MATHEMATICAL MODELS

When the buffer is filled up, it doesn’t matter how
many packets are generated, since they are all dis-
carded. So:

d
(n)
B = qP̂ (n)

suc (1.3b)

Since the number of stored packets cannot be
come negative we have:

d
(n)
0 = 0 (1.3c)

Steady occupied buffer space When one of the
following things happens, the buffer content does
neither decrease nor increase:

1. Player 1 does neither send nor generate a
packet.

2. Player 1 does send, but his packet collides. No
packet is generated.

3. Player 1 does generate exactly one packet and
transfer it successfully.

Therefore the probability the occupied buffer space
S does not change after n time slots with probabil-
ity (the numbers correspond to the items of the list
above):

s
(n)
S = (1− q)e−λ︸ ︷︷ ︸

(1)

+ q(1− P̂ (n)
suc)e

−λ︸ ︷︷ ︸
(2)

+

qP̂ (n)
sucλe

−λ︸ ︷︷ ︸
(3)

∀ 0 < S < B

= e−λ
(
1 + qP̂ (n)

suc(λ− 1)
) ∀ 0 < S < B

(1.4a)

If S = 0 (the buffer is empty) only the cases 1
and 3 can happen and hence:

s
(n)
0 = e−λ(1 + λ · qP̂ (n)

suc) (1.4b)

If S = B the buffer is already filled and it does
not matter how many packets are generated since
they are all discarded. The only condition is, that
the user does not send a packet successfully:

s
(n)
B = 1− qP̂ (n)

suc (1.4c)

Increase in the number of occupied buffer space
The transition iST with T > S and T < B means,
T −S packets are added to the buffer. This happens
when either T − S packets are generated and no
packet transmitted successfully (first addend in the
following formula) or T − S + 1 packets are gen-
erated and one is transmitted successfully (second
addend):

i
(n)
ST =

(
1− qP̂ (n)

suc

) λT−S

(T − S)!
e−λ

+ qP̂ (n)
suc

λT−S+1

(T − S + 1)!
e−λ

=
λT−S

(T − S)!
e−λ·(

1 + qP̂ (n)
suc

(
λ

T − S + 1
− 1
))

(1.5a)

The transition iSB means, at least B − S pack-
ets are generated and none of them is transmitted
successfully. Hence:

i
(n)
SB = (1− qP (n)

suc)
∞∑

k=B−S

λk

k!
e−λ (1.5b)

The transition matrix after n time slots therefore
is:

P
(n)
B =

⎛
⎜⎜⎜⎜⎜⎝
s
(n)
0 i

(n)
01 . . . i

(n)
0B

d
(n)
1 s

(n)
1

. . .
...

. i
(n)
(B−1)B

d
(n)
B s

(n)
B

⎞
⎟⎟⎟⎟⎟⎠ (1.6)

where the entries are given by (1.3), (1.4) and (1.5)
respectively.

Using the starting distribution u = (1, 0, . . . , 0)
we can calculate the probability distribution of the
occupied buffer space after n time slots as follows:

u(n) = uP
(1)
B P

(2)
B · · ·P(n)

B (1.7)

The expected number ofN−1 users who want to
transmit a packet now is approximated by the prob-

11

1. THE ALOHA PROTOCOL

ability, the buffer is not empty times N − 1:

N
(n)
active = (N − 1)u ·

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ (1.8)

The effective sending probability qeff

As we will show in section 1.3.1 on page 17, N
players can transmit at most

(
1− 1

N

)N−1
packets.

For this reason if we have

λ >
1
N

(
1− 1

N

)N−1

(1.9)

the users generate more packets than they can send.
The buffers will fill up and every player sends all
the time with probability q after a sufficiently large
time.

REMARK: Even when the arrival rate exceed the
throughput, there is a chance the buffer is emptied
completely. But the bigger the λ and B, the smaller
the probability (see table 1.1). For the sake of sim-

B λ/TPmax Probability
20 1.05 1.81 %
50 1.05 0.127 %
10 1.1 0.007 %
20 2.6 1 · 10−13 %

Table 1.1. Probability the buffer is empty con-

sidering long term behavior when 10 users with

q = 0.1 compete. λ/TPmax stands for the ra-

tio of the arrival rate and the maximum through-

put.

plicity we will ignore these small chances and as-
sume, as already mentioned, the player constantly
wants to send. �

On the other hand, when less packets arrive than
the participants could send, the users are not busy
all the time trying to send packets. Figure 1.5 il-
lustrates this circumstance: At a rate given by λ,
new packets arrive. The participant thereafter tries
to send this packet with probability q until he suc-
ceeds. This is expected to happen before a new

Packet arrive Packet arrive

no attempt /
collision

success
waiting

s1s1 1/λ

q 0

qeff

Figure 1.5. Illustrates the calculation of the ef-

fective sending probability qeff. New packets

arrive at intervals of average length 1/λ, while

it takes lesser time to send a packet. The re-

maining time, the player spends waiting for new

packets. The ratio of time sending to the packet

arrival interval determines the effective send-

ing rate of the player.

packet arrives and he has to wait for this reason
(which means sending with probability 0). In a
rougher view, these two "stages" and their corre-
sponding sending probabilities can be summarized
to the effective sending probability, which is simply
the expected sending probability given by:

qeff = q

1

qP̂
(∞)
suc

1
λ

qP̂ (∞)
suc ≥ λ

where the numerator corresponds to the expected
number of time slots a participant needs to trans-
mit a packet, while the denominator is equal to the
interval till a new packet arrives.
P

(∞)
suc stands for the the probability of success af-

ter a sufficiently large amount of time when the sys-
tem ceased to fluctuate. Using the effective sending
probability qeff the probability of success is equal
to

P (∞)
suc = (1 − qeff)N−1 (1.10)

which gives us the equation:

qeff =
λ

(1− qeff)N−1
(1.11)

12

1.2. MATHEMATICAL MODELS

As we can see, the effective sending probability
does not depend on the actual choice q! Since the
following condition must be fulfilled:

λ ≥ q · P̂ (∞)
suc

the sending probability must however satisfy:

q ≥ λ

P̂
(∞)
suc

Accuracy of the calculations

Now we want to analyze how good our approxima-
tion of the number of users Nactive was. The equa-
tion (1.8) does not take into account the correlation
between the users. Therefore, we simulated one
million time slots with 10 users and a sending prob-
ability of q = 0.12. We then counted the number of
users who concurrently tried to send a packets for
every one of these times slots and compared the re-
sults to the values calculated as explained in section
1.2.3.

λ = 0.01: Using a packet arrival rate λ = 0.01,
we got the simulation result compiled in the second
column of table 1.2. As you can see 77.2 percent of
the time none of the participants wanted to transmit
data. The third column shows the (rounded) results
of the calculations. Since we treated the users inde-
pendently, the values are binomially distributed. We
can now perform a goodness-of-fit test ([Bor99]) to
test if the simulation results are as well binomially
distributed with the same mean and variance (null
hypothesis H0) or if they differ significantly from
our results (alternative hypothesis H1).

The goodness-of-fit test is carried out by calcu-
lating the χ2-value according to:

χ2 =
10∑

j=0

(fo
j − fe

j)2

fe
j

(1.12)

where fo
j and fe

j correspond to the observed and ex-
pected frequencies respectively. The degree of free-
dom is ten (df=10), since of the 11 possible num-
bers of users concurrently sending 10 can be freely

j fo
j πo

j fe
j πe

j

0 771951 (77.2%) 769942 (77%)
1 200443 (20%) 203948 (20.4%)
2 25348 (2.5%) 24310 (2.4%)
3 2128 (0.2%) 1717 (0.2%)
4 123 (0%) 80 (0%)
5 5 (0%) 3 (0%)
6 2 (0%) 0 (0%)
7 0 (0%) 0 (0%)
8 0 (0%) 0 (0%)
9 0 (0%) 0 (0%)
10 0 (0%) 0 (0%)

Table 1.2. Shows the number of users j con-

currently sending. fo
j (πo

j) stand for the ob-

served frequency (probabilty) and fe
j (πe

j) for

the expected frequency (probability) calculated

using the methods from section 1.2.3. The to-

tal number of users is 10, the sending prob-

ability q = 0.12 and the packet arrival rate

λ = 0.01.

chosen (the 11th one is given by the condition, the
numbers must add up to 1’000’000). Using (1.12)
we get

χ2 ≈ 302

Comparing this to the significance level of 99%
which is χ2

(10;99%) ≈ 23 we see, the null hypoth-
esis (that the number of users sending is a random
sample from a binominal distribution) has to be re-
jected. But since we used 1’000’000 samples, the
difference can be very small. To estimate the order
of magnitude we calculate the effect size given by
([Bor99])

ε =

√∑ (πo
j − πe

j)
2

πe
j

(1.13)

and we get ε = 0.0174 (very small effect). Com-
paring the observed success probability P (∞)

suc,obs =
0.778 with the one calculated according to (1.10)
and (1.11) which is P (∞)

suc,eff = 0.790 we see an error
of

P
(∞)
suc,eff − P (∞)

suc,obs

P
(∞)
suc,obs

= 1.58% (1.14)

13

1. THE ALOHA PROTOCOL

j fo
j πo

j fe
j πe

j

0 391840 (39.2%) 385897 (38.6%)
1 378427 (37.8%) 385508 (38.6%)
2 171376 (17.1%) 173304 (17.3%)
3 47858 (4.8%) 46168 (4.6%)
4 9109 (0.9%) 8071 (0.8%)
5 1284 (0.1%) 968 (0.1%)
6 94 (0%) 81 (0%)
7 11 (0%) 5 (0%)
8 1 (0%) 0 (0%)
9 0 (0%) 0 (0%)
10 0 (0%) 0 (0%)
10 0 (0%) 0 (0%)

Table 1.3. Shows the number of users j con-

currently sending. fo
j (πo

j) stand for the ob-

served frequency (probabilty) and fe
j (πe

j) for

the expected frequency (probability) calculated

using the methods from section 1.2.3. The to-

tal number of users is 10, the sending prob-

ability q = 0.12 and the packet arrival rate

λ = 0.038.

Using qeff = 0.0258 according to (1.11) and ignor-
ing the correlations between the sending probabili-
ties of the participants therefore is precise enough.
The red lines in the four figures 1.6 (a) to (d) show
the characteristics when using λ = 0.01 both simu-
lated and calculated.

λ = 0.038: When increasing the arrival rate λ
up to the maximum throughput the player can reach,
we get the results compiled in table 1.3. The
goodness-of-fit test yields:

χ2 ≈ 557

And therefore the simulated results significantly
differ from the binomial distribution (χ2

(10;99%) ≈
23). As the higher value compared to the case λ =
0.01 already gives away, the effect size (according
to (1.13)) is bigger than for the case λ = 0.01

ε = 0.0236

but still very small. The difference between the ob-
served success probability P (∞)

suc,obs = 0.417 and the

j fo
j πo

j fe
j πe

j

0 278014 (27.8%) 278410 (27.8%)
1 380498 (38%) 379753 (38%)
2 232582 (23.3%) 233094 (23.3%)
3 84962 (8.5%) 84784 (8.5%)
4 20369 (2%) 20238 (2%)
5 3215 (0.3%) 3313 (0.3%)
6 333 (0%) 377 (0%)
7 26 (0%) 29 (0%)
8 1 (0%) 2 (0%)
9 0 (0%) 0 (0%)
10 0 (0%) 0 (0%)

Table 1.4. Shows the number of users j con-

currently sending. fo
j (πo

j) stand for the ob-

served frequency (probabilty) and fe
j (πe

j) for

the expected frequency (probability) calculated

using the methods from section 1.2.3. The to-

tal number of users is 10, the sending prob-

ability q = 0.12 and the packet arrival rate

λ = 0.1.

calculated result P (∞)
suc,eff = 0.424 is increased as

well

P
(∞)
suc,eff − P (∞)

suc,obs

P
(∞)
suc,obs

= 1.89%

but still sufficiently small to yield meaningful re-
sults as the blue courses in the figures 1.6 (a) to (d)
show.

λ = 0.1: Finally, we consider the case the arrival
rate of packets exceeds the throughput of the partic-
ipants and their buffers are filled up. In this case all
participants send with probability qeff = q = 0.12
at any time (the ratio of the arrival rate to the max-
imum throughput is approximately 2.6, as the last
row in table 1.1 the buffer being empty consider-
ing long term behavior is very tiny). Therefore the
sending behavior of the users cannot be correlated
and the simulation results have to tally with the cal-
culated results. As table 1.4 shows this is the case
and since

χ2 ≈ 13

14

1.2. MATHEMATICAL MODELS

10
1

10
2

10
3

0.05

0.1

0

2

20

Slot

B
uf

fe
r

sp
ac

e
us

ed

λ=0.1

λ=0.038

λ=0.01

(a) Used buffer space: If more packet are generated than
can be sent (λ > q · (1 − q)9 ≈ 0.038) by one user,
the the buffer is filled up continuously. If equally many
packet arrive as can be sent, approximately 2 packet slots
are used on average in respective buffers. At an arrival
rate of λ = 0.01 the buffer remains almost empty - only
0.1 slots are used on average. The calculated courses are
very precise for the cases λ = 0.1 and λ = 0.01, while
deviant for the case λ = 0.038.

10
1

10
2

10
3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Slot

T
hr

ou
gh

pu
t

λ=0.1

λ=0.038

λ=0.01

(b) Throughput: If too many packet are generated, the
user never lacks of material to send. The throughput
therefore increases fast up to the maxium q(1−q)9. If as
many packets arrive as can be transmitted (λ = 0.038),
the throughput as well strives for the maximum, but since
entirely drained buffers can still arise, this maximum
is not reached completely. If only λ = 0.01 packets
per time slot arrive, they can all be sent easily and the
throughput is equal to the arrival rate.

10
1

10
2

10
3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Slot

ac
tu

al
 s

en
d

pr
ob

ab
ili

ty
 q

’

λ=0.1

λ=0.038

λ=0.01

(c) q′: At an arrival rate λ = 0.1 > q the actual sending
probability q′ is equivalent to the real sending probability
q. Interestingly an arrival rate approximately equal to the
possible throughput λ = 0.038 results in a way lower
actual sending probability of approximately 0.075. This
can be explained by noting, that the throughput at q =
0.12 can also be reached by a sending probability smaller
than 1. If too few packets arrive e.g. λ = 0.01, the
chance of being successful when sending them, is very
high and therefore q′ ≈ λ.

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Slot

P
su

c

λ=0.1

λ=0.038

λ=0.01

(d) Psuc: The probability of a being successful when
sending a packet clearly is the bigger the smaller the ar-
rival rate λ is. For λ greater than the maximum through-
put, the probability approximates (1 − q)9.

Figure 1.6. Shows four interesting characteristics: buffer space used (a), throughput (b), actual sending

probability (c) and the probability Psuc (d) for three different arrival rates λ. The gray lines represent the

average of 1000 simulation runs. There are 10 users competing with a sending probability of q = 0.12..

15

1. THE ALOHA PROTOCOL

compared to χ2
(10;99%) ≈ 23 the null hypothesis

holds. The difference between the measured suc-
cess probability P (∞)

suc,obs = 0.315 and the expected

result P (∞)
suc,eff = 0.316:

P
(∞)
suc,eff − P (∞)

suc,obs

P
(∞)
suc,obs

= 0.293%

is purely by chance. The green lines in the figures
1.6 (a) to (d) show the characteristics when using
λ = 0.1 both simulated and calculated.

Conclusion The statistical analysis carried out
in section 1.2.3 showed, that the participants us-
ing buffers can be approximated using the Markov
chain derived in section 1.2.3. When waiting a suffi-
ciently large time, the buffers don’t have do be con-
sidered anymore and it is enough to calculate the
effective sending probability according to (1.11) on
page 12 and thereafter proceed as in the model 1.2.2
described in section 1.2.2 on page 9. We will there-
fore not use the rather complex model derived in
this section but the more simpler version 1.2.2 from
section 1.2.2.

1.3 Efficiency of ALOHA

1.3.1 Throughput

As already mentioned, all packets are of the same
length denoted by L. Let T be the time necessary
to transmit a single packet. Given the bit rateB this
time clearly is equal to T = L

B .

Pure ALOHA

In the time interval (t, t+T) a successful transmis-
sion takes places only when:

1. Exactly one participant sends a packet with the
starting time lying between t and t+T . Let this
starting time be t′ with t ≤ t′ < T .

2. The packet does collide, which means, no
other users starts transmitting a packet within
the period (t′ − T, t′ + T).

P1

P2

P3

Collision

t t+Tt-T

Figure 1.7. Illustration of the pure ALOHA pro-

tocol with three Players P1, P2 and P3. To

ensure, that the packet of the first player sent

at time instance t does not collide, the remain-

ing players are not allowed to send within the

red hatched time period of length 2T.

These facts are represented by figure 1.7.
The probability of exactly k of the total ofN par-

ticipants try to transmit a packet in a given time in-
terval of length T is, using the first model, equal
to:

Pr [k,N] =
(
N

k

)
qk(1− q)N−k (1.15)

And considering the second model:

Pr [k] =
Gke−G

k!
(1.16)

With the considerations carried out so far the
throughput according to the first model can be cal-
culated as follows:

TP1 = Pr [0, N − 1] Pr [1, N]

= (1− q)N−1 ·Nq(1− q)N−1

= Nq(1− q)2(N−1) (1.17)

Or when using the second model:

TP2 = Pr [0] Pr [1]

= e−G ·Ge−G

= Ge−2G (1.18)

16

1.3. EFFICIENCY OF ALOHA

0 0.5 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

G, q⋅N

to
ta

l t
hr

ou
gh

pu
t

P
pure

B
pure

P
slotted

B
slotted

Figure 1.8. Total throughput of packets per

frame time T forN = 10 participants. Bpure

andBslotted show the throughput of pure and

slotted ALOHA respectively according to the

first model subject to the product q ·N , where

q stands for the sending probability. Ppure

and Pslotted stand for the throughput after the

second model in dependence of the loadG

Differentiating (1.17) leads to:

dTP1(q)
dq

= N(1− q)2(N−1)−1 · [1− q(2N − 1)]

The maximum throughput according to the first
model is therefore achieved at the following send-
ing probability:

qopt =
1

2N − 1
(1.19)

On the other hand the following results from dif-
ferentiating (1.18):

dTP2(G)
dG

= e−2G (1− 2G)

And the throughput is maximized for G = 0.5 and
is equal to TP2,max = 1/2e ≈ 0.184. The courses
Bpure and Ppure in figure 1.8 show the through-
put according to the first and second model respec-
tively subject to the parameter Nq and G respec-
tively when 10 users participate.

P1

P2

P3

collision

t t+Tt-T

Figure 1.9. Example of slotted ALOHA with

three users. In contrast to figure 1.7 the trans-

mission can start at the beginning of given

time slots. Therefore, the critical range (red

hatched) within no other transmission are al-

lowed, is cut in half.

Slotted ALOHA

In contrast to the pure ALOHA-protocol described
in the previous section, the users are not allowed to
send anytime, but only at the beginning of a time
slot of length T . This ensures a packet sent at time
instance t′ only collides, when another participant
sends a packet within the period (t, t+T) (An there-
fore starts the transmission at the point in time t′

too.). Figure 1.9 shows these considerations.
The throughput according to the first model is:

TP1 = Pr [1, N]

= Nq(1− q)N−1 (1.20)

The derivative of the function (1.20) is:

dTP1(q)
dq

= N(1− q)N−2(1− qN)

and the throughput is maximized for

qopt = 1/N (1.21)

According to the second model we have:

TP2 = Ge−G

And TP2 differentiated vs G:

dTP2(G)
dG

= e−G(1−G)

17

1. THE ALOHA PROTOCOL

The maximum throughput is therefore reached at

Gopt = 1 (1.22)

and is of size G = 1/e ≈ 0.368, twice as big as
the maximum throughput in the pure ALOHA case.
The linesBslotted and Pslotted in figure 1.8 show the
throughput according to the first and second model
subject to the offered load and sending probability
respectively when 10 users participate.

1.3.2 Delay

Pure ALOHA

Using the binomial model Let the random vari-
ableD denote the delay of a given packet. Since the
probability, a particular Player transmits a packet in
the timespan T , is equal to P (T)

suc = q(1− q)2(N−1)

according to (1.17). Therefore the probability he
doesn’t send or the transmission attempt fails within

the period T is equal to P
(T)
suc = 1−P (T)

suc . Since this
probability is time-independent, we can generalize
the formula to:

P
(t)
suc =

⎛
⎜⎝1− q(1− q)2(N−1)︸ ︷︷ ︸

ξ

⎞
⎟⎠
t

T

= ξ

t

T

= P (D ≥ t)
= 1− F (t) = Fc(t)

Where F (·) (Fc(·)) stand for the (complementary)
cumulative distribution of the delay D. Since we
know F (·) we can easily calculate the probability
density function f(·) of the random variable D by
differentiation:

F (t) = 1− ξ
t

T ∀t ≥ 0
⇒ f(t) = F ′(t)

= − 1
T
· ln(ξ)ξ

t

T ∀t ≥ 0 (1.23)

N pure slotted

5 22.6 11.2
10 49.8 24.8
20 104.2 52
50 267.2 133.6

100 539.1 269.5

Table 1.5. Shows the mean delay in the binomial

model when using the optimal sending proba-

bility q. As you can see, the delay values in the

pure version are roughly twice as big as for the

slotted cases.

Finally the expected delay E[D] is:

E[D] =
∫ ∞

0
tf(t) dt

Using (1.23) this leads to

= − T

ln ξ

= − T

ln
(
1− q(1− q)2(N−1)

) (1.24)

The delay is minimized for the same value q that
maximizes the throughput since the logarithmic
function is strict monotonic increasing and its argu-
ment is equal to (1.17) except for a constant factor.
When using the optimal q the delay-values com-
piled in second column of the table 1.5 result.

Using the Poisson model At every transmission
attempt the chances of succeeding is equal to e−2G

where we used (1.16). Therefore the number of at-
tempts A until a packet is transferred (including the
successful attempt) is given as follows:

Pr [A = a] =
(
1− e−2G

)a−1 · e−2G

18

1.4. GROUP OF UNFAIR USERS

The expected value of attempts E[A] can be com-
puted as the sum:

E[A] =
∞∑

a=1

a · Pr [A = a]

= e−2G
∞∑

a=1

a
(
1− e−2G

)a−1

= e2G

Every packet that takes a transmission attempts,
is delayed a − 1 times by the amount of time the
player waits. Let the mean waiting time beW , then
the expected delay is equal to:

E[D] =W · (E[A]− 1) (1.25)

=W (e2G − 1
)

(1.26)

(Where we used the linearity property of the ex-
pected value operator). For the throughput-optimal
case G = 0.5 the expected delay is approximately
1.7W .

Slotted ALOHA

Using the binomial model For every time slot a
specific user sends a packet successfully with prob-
ability Psuc = q(1 − q)N−1 (see equation (1.20)).
Therefore the probability a packet is delayed for d
time slots before sent is equal to:

Pr [D = d] =
∞∑

d=0

d(1− Psuc)dPsuc

=
1− Psuc

Psuc

=
1− q(1− q)N−1

q(1− q)N−1
(1.27)

As one can see easily, the delay (1.27) is mini-
mized for the same choice q = 1

N that maximizes
the throughput as well. Some exemplary values are
listed in the third column of table 1.5.

Using the Poisson model The mean delay can be
derived analogously we did in section 1.3.2. The
only difference lies in the probability of sending

a packet successfully, which now is equal to e−G.
Therefore the expected delay is equal to:

E[D] =W (eG − 1
)

(1.28)

WhereW is the mean waiting time. Using the opti-
mal offered load G = 1 leads to the same expected
delay in terms of waiting time E[D] ≈ 1.7W .

1.4 Group of unfair users

1.4.1 Procedure

In this section we assume, that not all N partici-
pants behave the same way, but are rather split into
a group of Nu unfair users and a group of Nf fair
user, whereNf +Nu = N . We examine the slotted
ALOHA-protocol and assume, the total number of
users N is known.

The fair users try to maximize the total through-
put and therefore send with the optimal sending
probability according to (1.21)

qf =
1
N

or according to (1.22) generate the load

Gf =
Nf

N

If all players stuck to this sending probability, the
total throughput (1.20) would be maximized. How-
ever, the unfair participants now try to reach the fol-
lowing points:

1. The throughput of their group should be max-
imized.

2. Each unfair participant should achieve the
same throughput on average.

3. Agreements between the unfair players don’t
take place and no departures from the
ALOHA-protocol such as increased packet
sizes or not sending within the given time slots
are allowed. (We assume that such measures
would be too easy to detect, even if the users
don’t reckon specifically with thieves.)

19

1. THE ALOHA PROTOCOL

In this section, we want to examine how the
throughput can be optimized if all unfair partici-
pants send with constant probability. In sections 2
and 3 on pages 27 and 33 respectively, a more flex-
ible protocol is examined. The second demanded
point can simply be fulfilled through symmetry,
which means all unfair participants send with the
same probability qu. The throughput for unfair
and fair players respectively now corresponds to
the likelihood exactly one respectively fair or unfair
players send. Therefore we have:

TP1,f = (1− qu)Nu ·Nfqf (1− qu)Nf−1

TP1,u = (1− qf)Nf ·Nuqu(1− qu)Nu−1

Or considering the second model:

TP2,f = e−Gu ·Gfe
−Gf

TP2,u = e−Gf ·Gue
−Gu

Differentiating TP1,u vs qu results in:

dTP1,u(qu)
dqu

= (1− qf)NfNu(1− qu)Nu−2

· (1− quNu)

The optimal sending probability of unfair users
therefor is equal to:

qopt,u =
1
Nu

(1.29)

And in the same way when differentiating TP2,u vs
Gu

dTP2,u(Gu)
dGu

= e−Gf−Gu(Gu − 1)

we get the optimal offered load Gopt,u being equal
to 1. In both models the optimal behaviour of unfair
participants does not depend on either the number
or sending probability of fair users, but only on the
size of unfair players.

Figure 1.10 shows the throughput for unfair and
fair users in a mixed group of N = 50 participants.
The throughput is normalized by dividing the ob-
tained values by the throughput that would result
from the symmetric case qf = qu = 1/N .

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

number of unfair participants N
unfair

no
rm

al
iz

ed
 m

ea
n

th
ro

ug
hp

ut

TP
unfair

TP
fair

TP
total

TP
opt

Figure 1.10. Shows the normalized throughput

(subject to the all-fair-case) for fair (TPfair) and

unfair (TPunfair) participants as well as the mean

achieved throughput (TPtotal) in dependence of

the number of unfair users when the total num-

ber of users N is held constant at 50. As a

reference the throughput (TPopt) resulting from

the case all users being fair is plotted as a dot-

ted line.

20

1.5. ESTIMATING THE NUMBER OF PARTICIPANTS

0 0.1 0.2 0.3 0.4
0.9

0.95

1
0

2

4

6

P
P

0qeff

Figure 1.11. Factor, by which the 10 unfair par-

ticipants can increase their sending probability

such that they are detected by the remaining 90

users only with probability Pc, when they only

sound the alarm they are certain to at least to

Pd that they don’t initiate an unwanted alarm

signal. The measuring time is set to 100 time

slots.

1.4.2 Detection of unfair users

In this section we examine how the group of
unfair participants can be uncovered. We assume,
the total number of participants is known to to all
users. Therefore every user can calculate the ex-
pected number of collision within a given number
of time slots. Since the unfair participants send with
an elevated probability, an increased number of col-
lision is measured on average. With the help of el-
ementary statistical calculations, we can now give
the probability all users are fair and send with prob-
ability q = 1/N for any given number of collisions.
Let Pd be the certainty that unfair users exists, that
must be fulfilled so that the users sound the alarm
due to the elevated number of collisions.

The unfair participants of course know these cal-
culations and can therefore choose their elevated
sending probability qu in a way that they are caught
at most with likelihood Pc [Bor99].

The figure 1.11 and 1.12 show, how large the un-
fair players can set their sending probability for a

0 0.1 0.2 0.3 0.4
0.9

0.95

1
0.5

1

1.5

2

2.5

P
P

0qeff

Figure 1.12. Shows the factor, by which the 10

unfair user can increase their sending proba-

bility without being caught by the 90 remain-

ing fair users with probability 1 − Pc. The fair

must be certain Pd certain in order to sound

the alarm. The measuring time is equal to 1000.

given Pd and Pc at most. The longer the measur-
ing time, the smaller the unfair participants have to
choose qu.

Figure 1.13 shows the bounds for qu for different
Pd-Pc-constallation subject to the measuring time
in slots.

1.5 Estimating the number of participants

As we have seen in section 1.3 on page 16, the
number of users has to be known by each partici-
pant in order to maximize the throughput and min-
imizing the delay. Since the ALOHA-protocol has
no setup phase or agreements between players, in
this section, the task should be examined, how the
number of players can be estimated, using the mea-
sured collision probability. We focus on the slot-
ted ALOHA-protocol, but the result for unslotted
ALOHA can simply be derived.

1.5.1 All users conforming to the rules

In this section we assume, that at first all N par-
ticipants conform to the rules and therefore act the

21

1. THE ALOHA PROTOCOL

10
1

10
2

10
3

10
4

10
0

10
1

measuring time

m
ax

im
al

 r
at

io
 q

u /
q f

P = 0.5, P = 0.95

P = 0.5, P = 0.99

P = 0.1, P = 0.95

P = 0.1, P = 0.99

P = 0.05, P = 0.95

P = 0.05, P = 0.990
0
0
0
0
0

qeff

qeff

qeff

qeff

qeff

qeff

Figure 1.13. Maximum possible sending probability of the 10 unfair users without being uncoverd by the

remaining 90 users. The more time slots are used to count collisions, the less aggressive the unfair users

can behave.

same way and send with the same likelihood q. The
following collision probability Pcol results:

Pcol = 1− (1− q)N −Nq(1− q)N−1 (1.30)

Or according to the Poisson model:

= 1− e−G −Ge−G N � 1
(1.31)

Let CS be the random variable standing for the
number of slots out of N slots, in which collisions
occured. CS is binomially distributed and has the
following probability density function:

P (C = c) =
(
S

c

)
· P c

col · (1− Pcol)S−c (1.32)

If the number of users N is large enough and the
skew is not to big, the distribution can be approxi-
mated by the normal distribution:

WS
Pcol

(c) ≈ 1√
2πSPcol(1− Pcol)

·

exp

(
− (c− SPcol)2

2SPcol(1− Pcol)

)

REMARK: A possible rule of thumb to decide
whether the approximation is valid is given by the
following tests:

N · Pcol
?
> 5

N · (1− Pcol)
?
> 5

�
The task is to estimate the unobserved parameter

N on the basis of the observed number of collisions
C.

N 	→ f(C|N)

Using (1.32) and (1.30) we have:

f(C|N) =
(
S

c

)
·
(
1− (1− q)N−

Nq(1− q)N−1
)c

· ((1− q)N −Nq(1− q)N−1
)S−c

The maximum likelihood estimate of N is

22

1.5. ESTIMATING THE NUMBER OF PARTICIPANTS

[Pro01]:

N̂ML(x) = arg max
N

f(C|N)

This estimate can be obtained by solving the fol-
lowing equation for N̄ :

P̂col =
(
1− (1− q)N̄ − N̄q(1− q)N̄−1

)
(1.33)

or when N � 1 and G = Nq:

≈
(
1− e−N̄q − N̄qe−N̄q

)
(1.34)

Where the estimated collision probability P̂col

can be obtained from the observed number of colli-
sion C by the relation:

P̂col =
C

S

Using equation (1.34) we have:

N̄ ≈ −1
q

Lam−1

(
(ˆPcol − 1) · e−1

)− 1 (1.35)

Where Lam−1 denotes the k = −1 branch of the
Lambert W-function.

REMARK: Since (1.34) is a strictly monotoni-
cally increasing function, only one positive and real
N̄ satisfies equation (1.35) and the principal value
of the Lambert W-function results in a negative,
hence impossible, estimate of N̄ . �

SinceN must be an integer, the maximum likeli-
hood estimate is obtained by rounding N̄ to the next
number.

The exact equation (1.33) can be inverted as well,
but the result is rather complex:

N̄ =
q Lam−1

(−(P̂col−1)·ln(1−q)
q exp

(
ln(1−q)

q

))
q ln(1− q)

− (1− q) ln(1− q)
q ln(1− q)

From the equation

C = S
(
1− (1− q)N̄ − N̄q(1− q)N̄−1

)
:= g(N)

the probability density distribution for N̄ follows:

WN̄ (n̄) = WS
Pcol

(g(n̄)) ·
∣∣∣∣dg(n̄)
dn̄

∣∣∣∣ (1.36)

Where

dg(n̄)
dn̄

= −S
(
(1− q)n̄−1

(
ln(1− q)(1− q − n̄) + q

))
≥ 0 (1.37)

As we now know the most likely number of N ,
we can calculate the optimal send probability q̂
based on this estimate according to (1.21) on page
17:

q̂ =
1
N̂

= h(N̂)

REMARK: In fact, we could directly use the ratio-
nal and therefore impossible estimate N̄ to calcu-
late the send probability q without having rounded
the value. �

The estimate of q is distributed as follows:

WQ̂(q̂) = WN̂ (h(q̂))
∣∣∣∣dh−1(q̂)

dq

∣∣∣∣
Where

dh−1(q̂)
dq̂

= − 1
q̂2

The distribution of q̂ follows from (1.36) and (1.37):

WQ̂(q̂) = WS
Pcol

(
− 1
q̂2

)
· 1
q̂2
·

dg(n̂)
dn̂

∣∣∣∣
n̂=− 1

q̂2

Figure 1.14 shows, which throughput on aver-
age results when using the optimal q according to
the estimated number of N when using four dif-
ferent measuring loads G0 and send probabilities
q0 = G0/N . As you can see, the choice G0 ≈ 2
yields the best estimations. If the measuring load
is by the factor ten to small in comparision with
the throughput maximizing load G = 1, it takes

23

1. THE ALOHA PROTOCOL

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

measuring time (in slots)

m
ea

n
no

rm
al

iz
ed

 th
ro

ug
hp

ut

G
0
 = .1

G
0
 = 1

G
0
 = 2

G
0
 = 10

Figure 1.14. Mean normalized throughput for

different send probabilities q0 and loads

G0 = q0 ·N respectively depending of the

number of slots . The number of users N -

all being fair - was set to 50. When using the

optimal measuring test load G0 ≈ 2 a good

estimation - and hence good throughput - can

be reached after only 50 time slots.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

G
0
 = N⋅ q

0

m
ea

n
no

rm
al

iz
ed

 th
ro

ug
hp

ut

S = 10

S = 100

S = 1000

Figure 1.15. Mean normalized throughput sub-

ject to the test load G0 = q0 ·N (N = 50)

for three different measuring times S. The best

estimations are obtained when 1 ≤ G0 ≤ 4
holds.

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

measuring time in slots

no
rm

al
iz

ed
 m

ea
n

th
ro

ug
hp

ut

G

0
 = 0.1

G
0
 = 0.5

G
0
 = 5

G
0
 = 10

G
0
 = 20

G
0
 = 30

Figure 1.16. Estimating the number of unfair

participants (Nu = 50) when the number of

total users (N = 200) is known.

1000 time slots to reach a reliable estimation. On
the other hand, with a measuring load to big by the
same factor (G = 10) even after 1000 time slots
the resulting estimation q̂ is very inaccurate in most
cases.

Figure 1.15 shows, within which bounds the test
load has to lie in order to obtain a reliable estimation
q̂. These bounds are shown for different measuring
times S.

1.5.2 A group of unfair users

In this subsection we assume, the total number
of N is known. Of those, Nu participants are un-
fair. In order not to betray themselves, they cannot
be recognized as unfair players and therefore, the
number Nu is unknown to the unfair as well as the
fair players.

The task therefore is, to estimate the number of
unfair users with the same procedure we used in
section 1.5.1. The estimation can thereafter be used
by the unfair participants to set their sending proba-
bility according to (1.29) (page 20)in order to max-
imize their throughput.

Figure 1.16 shows how well the estimation fits
in dependence of the measuring time for different
measuring loads G0,u when Nu = 50 and Nf =

24

1.5. ESTIMATING THE NUMBER OF PARTICIPANTS

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

offered load G
0
 = N⋅ q

0

no
rm

al
iz

ed
 m

ea
n

th
ro

ug
hp

ut

S=10

S=100

S=1000

Figure 1.17. Mean normalized throughput

against the test loadG0 for three different mea-

suring times.

150. At the load G0,u ≈ 5 a reliable estimation
is reached in the shortest time. With this load, the
total amount of packets per time slot Nuqu +Nfqf
is approximately equal to 5 50

200 + 150 1
200 = 2 and

therefore, like in the previous section, twice as large
as the offered load in the optimal case.

Figure 1.17 shows the achieved normalized
throughput for three different measuring times in
dependence of the test load G0,unfair.

1.5.3 Repeated estimation

The estimated optimal sending probability q̂
from sections 1.5.1 and 1.5.2 can be used to trans-
mit packets. By the way the number of collisions
can be counted and used to obtain a new estimation
of the number of users. This can be particularly
useful, if we expect users to leave or join the proto-
col and the users may increase or have to decrease
their sending rate. We restrict the calculations to
case, the number of users stays the same and anal-
yse, how much estimation enhances by iterating the
measurments.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

G
0
 = N⋅ q

0

m
ea

n
no

rm
al

iz
ed

 th
ro

ug
hp

ut

0.01
0.1
0.333
3
10
100

Figure 1.18. Shows the mean normalized

throughput, that is reached when repeating the

estimation procedure. The values at 0 corre-

spond to the throughput obtained when using

the test loadG0, the values at 1 corresponds to

the throughput obtained by using the first esti-

mation of q and so on. The measuring time S
was set to 100, the number of usersN is 100.

The ith estimation of q is distributed as follows:

W i
q̂0

(q̂i) =
∫ 1

0
· · ·
∫ 1

0
fq̂1(q̂2) · · · fq̂i−1(q̂i)

· q̂0 dq̂1 · · · dq̂n
Where fq̂1(q̂2) denotes the distribution of the sec-
ond estimation of q based of the measuring results
obtained when sending according to the first esti-
mation of q.

Figure 1.18 shows, how the estimation enhances
when using 100 time slots and the procedure is re-
peated.

25

1. THE ALOHA PROTOCOL

26

Chapter 2

Adaptive sending probabilities

In this section another method should be exam-
ined, beside the estimation of the number of users
1.5, how the unfair users can increase their through-
put altogether as much as possible. We assume that
the total number of users N is known (at least to
the fair participants), however not the number of the
unfair players Nu.

2.1 Procedure

The fair participants always send with probabil-
ity qf = 1

N , which means they aim for the opti-
mal throughput of the group of all users. The unfair
players, however, behave like follows: At first, they
send with the same probability as the unfair users
qu = qf for the duration of X time slots and mea-
sure the achieved throughput TP1. After this mea-
suring time each unfair player increases his sending
probability by α percent and transmit again for X
time slots. Afterward, each unfair player i checks
if the achieved throughput TP2 is bigger than the
throughput obtained with the first choice of q(i)u , the
player again increases his send probability by the
factor α. If, on the other hand, the throughput de-
creased, the player decreases his send probability
by α percent. This procedure is repeated perma-
nently. The goal of the procedures is to bring the
values q(i)u of the unfair players to the optimal val-
ues, which is according to (1.29) (page 20) equal
to:

q(i)u =
1
Nu

(2.1)

REMARK: Optimal means the throughput of the
group of unfair players (the sum of the individual

throughputs of unfair players) is maximized, and
every unfair player achieves the same throughput.
�

2.2 Throughput reached

The figures 2.1 and 2.2 show the throughput the
group of the unfair participants, the group of the
fair users as well as both together respectively can
achieve on an average in a specific run and averaged
over 1000 runs. The throughput was normalized in
a way that the value 1 corresponds to the through-
put the considered user would reach when all users
are sending with the optimal probability q = 1/N
according to equation (1.21). The maximal possible
increase the 3 users can achieve is equal to:

f =
qu(1− qu)Nu−1(1− qf)Nf

qf (1− qf)N−1

≈ 1.83 (2.2)

In practice, the unfair users reach a mean through-
put around three times bigger than when behaving
fair as you can see in figure 2.1 . The reasons for
the discrepancy between (2.2) and the simulation
results are clarified in the next section.

2.3 Cannibalism

2.3.1 Reasons

As figure 2.1 showed, the throughput of the un-
fair group can be improved heavily by the adaptive

27

2. ADAPTIVE SENDING PROBABILITIES

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

measuring period

m
ea

n
no

rm
al

iz
ed

 th
ro

ug
hp

ut

unfair

fair

total

Figure 2.1. Shows the mean normalized

throughput for 7 fair (TPfair) and 3 unfair users

(TPunfair) as well as the mean total achieved

throughput (TPtotal). The simulation run was

carried out with a measuring time of 8192

time slots and a increase/decrease parameter

α = 10%. The average throughput of the un-

fair participants is increased roughly by the fac-

tor 3.5 after 100 measurement periods. The

throughput of the unfair players on the other

hand drops to zero.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

measuring period

m
ea

n
no

rm
al

iz
ed

 th
ro

ug
hp

ut

total

fair

unfair

Figure 2.2. Illustrates the mean normalized

throughput for 7 fair (TPfair), 3 unfair users

(TPunfair) and in total (TPtotal) respectively sub-

ject to the measuring period, each of which

8192 time slots long. All throughput values are

calculated as the average of 1000 simulation

runs. The parameterα is set to 10 %.

procedure explained in section 2.1. It was not ex-
amined however until now, whether this throughput
is distributed equally among the unfair players as
demanded in section 1.4.1. When examining the
individual throughput courses of unfair players in
figure 2.3 an astonishing fact is revealed: The three
unfair players don’t increase their sending proba-
bility in the same order of magnitude but rather ex-
actly one of the unfair players constantly increases
his probability up to 1 at the expense of the remain-
ing participants, including his allied unfair players.

At the end, the two other unfair participants send
with a probability, that corresponds approximately
to sending probability of the fair players. Con-
sequently, the unfair player who constantly sends
and cannibalizes all others, achieves a throughput
TPcan:

TPcan ≈ (1− qf)N−1 (2.3)

28

2.3. CANNIBALISM

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

measuring period

se
nd

in
g

pr
ob

ab
ili

ty
 q

P
3

P
2

P
1

Figure 2.3. Shows the sending probabilities of

the three unfair users in detail for a measuring

time of 8192 slots and Nf = 7 fair partici-

pants. The parameter α was set to 0.1. As

you can see, on of the unfair users sends con-

stantly at the end, while the remaining unfair

users remain at a moderate sending probability

level.

while the remaining player never succeeds in trans-
mitting a packet:

TPrest = 0 (2.4)

The throughput of the cannibalizing users is in-
creased by the factor N compared to the case, he
and all competitors behave fairly. When increment-
ing and decrementing the sending probability by α
percent, this cannibalizing behavior occurs for ev-
ery choice of α.

2.3.2 Detection

Since the unfair users are bound by an agreement
to each other, even the cannibalizing participant,
who actually profits, has an interest in changing his
behavior. To do so, however, he has to be able to re-
alize that he is doing so. Or at least, the remaining
unfair users should notice that they are victims, too.

It will be shown with the help of a specific set-
ting, that either of the requests can be satisfied.

2.3.3 Countermeasure

When incrementing and decrementing the send-
ing probability by α percent, this leads to cannibal-
ism as seen in section 2.3. One obvious thing to
prevent cannibalism or at least make it more diffi-
cult for a participant to increase his sending proba-
bility while forcing back the sending probability of
the remaining members of the unfair group is the
following: The bigger the q becomes, the smaller
the increase steps are. Therefore unfair users who
tend to be restrained by one or several participants
can catch up with the more aggressive users. This
kind of rubber band effect can be achieved with var-
ious methods. For example, the increase or decrease
of q in terms of the percentage of q represented by
α(q) could be chosen as follows:

αv1(q) = β · (1− q) (2.5a)

or

αv1(q) = β · (− log(q)
)

(2.5b)

Where β is a constant. Both choices (2.5a) and
(2.5b) prevent cannibalism, but as one can see in
figure 2.5 another, even worse, problem arises: The
unfair users all increase their sending probabilities
nearly the same way, but they don’t stop in doing
so when the group throughput is reached, but con-
tinue until they all send constantly and the through-
put drops to zero.

Figure 2.6 shows the course of the throughput of
the fair group, the unfair group and both together
respectively. After a initial increase up to the the-
oretical maxiumum, the throughput of unfair users
begins to drop to zero.

29

2. ADAPTIVE SENDING PROBABILITIES

1/4 1/8 1/8

2/4

(a) Shows the reality: Four users take part in the
protocol, three unfair (orange) ones and one fair
player (green). One of the unfair users has in-
creased his sending probability too far (meaning
over the level 1/Nu = 1/3 up to 50%). The two re-
maining unfair users are suppressed to a sending
probability 1/8 and therefore smaller than 1/3, in
fact even smaller than the value of the fair user.

1/4 1/4

1/4 1/4

(b) Shows the view of the fair player (high-
lighted): The packets of the two suppressed unfair
users are regarded as coming from only one user,
exactly vice-versa the cannibalizing participants is
considered as two users. By this interpretation,
the fair player thinks there are three additional fair
users taking part in the protocol all sending with
probability 1/4.

1/4 1/4

2/4

(c) This figure shows the view of the user, that
cannibalizes the remaining unfair players. He can
simply interpret these two users as being one fair
participants. With this interpretation his sending
probability of 0.5 is not too big, he should on the
contrary increase the value up to 1 (what in fact
happens in reality).

1/281/281/281/281/21/281/281/28

1/281/281/28 1/8 1/8

1/8 1/8

1/8 1/8

(d) The repressed users finally can also interpret
their fate in a way, that they have the feeling to
send at the cost of the fair participants and sending
as often as the unfair companions. The single fair
player is divided up to 7 participants, which send
with a probability that is much smaller than their
own. The cannibalizing unfair user is interpreted
as four players who send with the probability 1/8
and therefore at the same rate.

Figure 2.4. Since only the packet load is recognized and not the emitting source, the reality (a) can be

interpreted in different ways. So all three types of users (framed) can interpret the reality in a way that

they don’t determine any anomaly.

30

2.3. CANNIBALISM

10
0

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

measuring interval

se
nd

in
g

pr
ob

ab
ili

ty

Player 1

Player 2

Player 3

Figure 2.5. This figure shows the courses of the

sending probabilities q(i) for three unfair play-

ers, when the adaptation α is made dependent

on the current value of q. 7 fair users, who

send steadily with 10 percent, were involved ad-

ditionally. The measuring intervals had a length

of 1000 time slots. As one sees, none of the un-

fair players is put at a disadvantage anymore.

However, the values of q rise all up to 1, when

this happens, none of the users can transfer a

packet successfully.

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

measuring interval

no
rm

al
iz

ed
 th

ro
ug

hp
ut

unfair
fair
total

Figure 2.6. Shows the throughput of the group

of unfair players (Nu = 3) as well as the

throughput of fair users (Nu = 3) when using

a sending probability adaption that depends

on the actual values of q. The unfair players

reach the desired point where their throughput

is maximized, but unfortunately don’t stop in-

creasing the sending probability up to 1 and the

throughput values drop to zero.

31

2. ADAPTIVE SENDING PROBABILITIES

32

Chapter 3

ALOHA with induced regularity

It was assumed until now that the sending
probability of the participants is time- and delay-
independant. In this section it shall be shown how
the throughput of all players can be increased with
the help of a delay dependent send probability. In
doing so a single player only needs to be informed
when one of his packets collides, more detailed in-
formation or even arrangements are not necessary.

Aloha protocols at which the sending probability
depends on the delay of the packages (and possibly
on a state parameter) are called variable-q-ALOHA
in the following.

In this chapter, the model 1.2.2 from the section
1.2.2 on page 9 should be used.

3.1 Version 1: Transient

In this section a simple version of a variable-
q-ALOHA protocol when the the send probability
only depends on packet-delays is given. The proto-
col is carried out - except for the variable sending
probability - like the real ALOHA-protocol.

3.1.1 Procedure

Idea

By a well directed choice of the sending probabil-
ities it should be tried to bring a certain regular-
ity into the ALOHA-protocol, which increases the
throughput and reduces the delay.

In the this section, we firstly go into the calcula-
tion of the throughput and the delay, the latter being
rather laborious. The accuracy of the results derived

is determined by comparing them with simulation
results.

In the section 3.3.1 on page 43 we will give in-
depth information how long it takes until we get
the desired regularity and how big the delay and
throughput are in this state.

In the section section 3.5 on page 54 finally it is
examined how unfair users can apply the protocol
when competing with fair users who behave accord-
ing to the conventional ALOHA–protocol described
in section 1.3 on page 16 and what the effects on de-
lay and throughput are for both the fair and unfair
players.

Name of the protocol

As we will see in section 3.1.2 it is advisable to
differentiate the users by the delay of their current
packet into two states. Since every participant can
switch from the one state to the other and back, we
call the protocol transient opposed to the protocol
described in section 3.2 on page 39.

Protocol description

The only thing a player has to do, is counting the
number time slots his current packet is delayed and
sending in every time slots according to the send-
ing probability qd+1 where d stands for the delay.
All participants share the same sending probability
vector q given in section 3.1.2.

33

3. ALOHA WITH INDUCED REGULARITY

1

0
1 2 3 ...

... ...

PP-2 P-1 P+1 P+2 ...Slot

unseeded stage seeded stage

q = 0 q = 0

q = 1

q = p

Figure 3.1. This illustration show the partic-

ipants behaviour analysed in subsection 3.1.

During P-1 time slots after last successful

transmission the user keeps quiet and sends

in the Pth slot a 100 per cent. A player who is

in this seeded stage is called seeded. As soon

as the delay becomes greater than P, the player

sends with a constant probability p. These par-

ticipants are referred to as unseeded

.

3.1.2 Mathematical model

Choice of the sending probability

qi denotes the likelihood a participant sends in the
ith time slot after a successful transmission. These
qi are given as follows (see illustration 3.1):

qi =

⎧⎪⎨
⎪⎩

0 i < P

1 i = P

p i > P

(3.1)

When the protocol was started so, nobody would
hazard a transmission attempt during P − 1 time
slots and send in the P th slot guaranteed (what
leads to a collision, except for the degenerate case
of only a participant). It is assumed for this reason
in the following, that at initialization every player
starts at the state i = P + 1.

Dividing into two states

In order to calculate the throughput and the delay
exactly we would need to take track of the delay
of every user in order to determine is sending prob-
ability at any given time instance. But since this is
not feasible, we only want to know, how many users

have a delay greater than P and therefore send with
constant probability p, and how many users have a
delay smaller or equal to P and for this reason send
if and only if the delay is equal to P .

The states i ≤ P are assigned to the seeded
stage, the remaining to the unseeded stage (see fig-
ure 3.1. Users who are in the seeded stage (and
therefore have sent at the most P time slots ago for
the last time), are labeled seeded players, those in
the unseeded stage unseeded players.

To calculate the performance, particularly the
throughput, of the protocol all users (N in number)
are divided up into two groups: Firstly a group of
seeded players (with Ns participants) and secondly
a group of unseeded players (with Nu participants).
Of course N = Ns +Nu.

REMARK: Please note that Nu has a different
meaning in this chapter than it had in chapters 2 and
1, where it represented the number of unfair players.
�

Markov chain

States We interpret the number of seeeded users
as states of a Markov chain now. So the state 0 cor-
responds to no seeded players, 1 corresponds to one
seeded player and so on up to the state N at which
all players are seeded. Altogether the chain contains
N + 1 states. Every time a new time slot starts, a
transition in the Markov chain takes place (see fig-
ure 3.2).

REMARK: If more users are participating than
the length of the period, which means N > P , only
up to P users can be seeded at the same time. Hence
the markov chain only has P + 1 states, as shown
in figure 3.3. �

Transition probabilities Since a player changes
from the unseeded to the seeded stage (see figure
3.1) if and only if he has transferred a package suc-
cessfully, Ns can increase by one per transition at
the most. A seeded player switches to the unseeded
group if and only if he is at the state i = P and one
of the unseeded player transmits a packet. Since
only one player can be in the state i = P (no two
players can have a sent a packet successfuly P time

34

3.1. VERSION 1: TRANSIENT

sN sN−1 s1 1

dN d1

iN−1

0 1 N-1 N· · ·

Figure 3.2. Markov chain examined in section

3.1. The states 0 to N stand for the correspond-

ing number of seeded users. Three transitions

types are possible, named s,d and i.

sN sN−1 sP−N+1 sP−N

dN dN−P+1

iN−1 iN−P

0 1 P-1 P· · ·

Figure 3.3. Markov chain examined in section

3.1 for the case N > P . The states 0 to N

stand for the corresponding number of seeded

users. Three transitions types are possible,

named s,d and i. Please note that in contrast to

the case N ≤ P (figure 3.2) the state N (and

as a consequence the whole Markov chain) is

not absorbing.

slots ago) at the same time, Ns can decrease by the
amount 1 at the most. If nobody sends or a colli-
sion occurs among seeded players, the groupsizes
Ns and Ns remain constant. So all the transitions
shown in illustration 3.2 are possible (For the case
N > P please consult figure 3.3).

We mark the probability that a state change
Xn+1 = N − Nu + 1, Xn = N − Nu takes place
by dNu . As mentioned this is the case if no seeded
player sends (probability 1 − Ns

N) and at the same
time exactly one unseeded players sends (probabil-
ity Nu p (1− p)Nu−1). Therefore:

dNu =
(P −N +Nu)

P
Nu p (1− p)Nu−1 (3.2)

Let iNu be the probability of a removal of a
seeded player and going frm the state N − Nu to
the state N −Nu − 1. It is given by the product of
the probabilities that a seeded player sends (Ns

N) and

at least one unseeded player sends (1− (1− p)Nu).
Hence:

iNu =
(N −Nu)

P

(
1− (1− p)Nu

)
(3.3)

The last possible transition fromN −Nu toN −
Nu is denoted by sNu and has the value 1− dNu −
iNu :

sNu =
(P −N + Nu)

P

(
1−Nu p (1− p)Nu−1

)
+

(N −Nu)
P

(1− p)Nu

(3.4)

We can take the first summand in (3.4) as the
likelihood that no seeded player sends while no un-
seeded player transmits a packet successfully and
the second summand as the probability a seeded
players sends successfully.

REMARK: The equations (3.4), (3.2) and (3.3)
are only valid for Nu > N − P . �

Let P be the transition matrix with elements pij ,
the probability of going from state i to state j in a
single-step. For the caseN ≤ P this matrix is given
by:

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

sN dN

iN−1 sN−1
. . .

.
i1 s1 d1

1

⎞
⎟⎟⎟⎟⎟⎟⎠ (3.5)

Where s, i and d are defined by (3.4), (3.3) and
(3.2) respectively (the zeros are not shown). For the
case N > P the transition matrix is:

P =

⎛
⎜⎜⎜⎜⎝

sN dN

iN−1 sN−1
. . .

. dN−P+1

iN−P sN−P

⎞
⎟⎟⎟⎟⎠ (3.6)

35

3. ALOHA WITH INDUCED REGULARITY

0 5 10 15 20
0.01

0.015

0.02

0.025

0.03

0.035

N

T
hr

ou
gh

pu
t

unset
set
total
ref

s1

Figure 3.4. Throughput of seeded and un-

seeded players as well as the the total through-

put subject to the number of unseeded play-

ers. The throughput of classical slotted ALOHA

is shown as dashed line. The total number

of player is 20, the period length P equals 30.

In second stage users send with probability

p = 1
P .

At the beginning of the protocol none of the play-
ers is seeded, this circumstance is represented with
the probability vector u which represents the start-
ing distribution:

u = (1, 0, . . . , 0) (3.7)

Then the probability vector after n slots is

u(n) = u · Pn (3.8)

3.1.3 Throughput

To be able to calculate the throughput after a cer-
tain time, at first the throughput which is reached at
a given number of unseeded players is calculated.
The throughput TP�

Nu
corresponds to the probabil-

ity a package is transferred successfully, either a
package of a seeded player (first addend in the fol-
lowing equation) or a package of a unseeded player
(second addend):

TP�
Nu

=
(N −Nu)

P
(1− p)Nu

+
(P −N +Nu)

P
Nu p (1− p)Nu−1

(3.9)

Illustration 3.4 shows the throughput of seeded
and unseeded players as well as the total through-
put vs. the number of seeded players (Ns). As a
comparison the throughput which would be reached
by the classic ALOHA–protocol is plotted. As one
sees, the total throughput gains for increasing num-
ber of Ns, however the unseeded players suffer
losses.

We can combine the elements of (3.9) in the vec-
tor T̆P (note the descending order of the TP�

Nu
).

T̆P = (TP�
Nu
,TP�

Nu−1, . . . ,TP�
max (N−P ,0))

(3.10)
The expected throughput after n slots is given by:

TP = u(n) · T̆P (3.11)

=
min (P ,N)∑

i=0

u
(n)
i T̆Pi

REMARK: The functions max(N − P, 0) and
min(P,N) in (3.9) and (3.11) respectively gener-
alize the formulas to any choice ofN eitherN ≤ P
or N > P . �

Where u(n) and T̆P are given by (3.8) and (3.10)
respectively. Figure 3.5 gives the average through-
put of ten thousand simulated results as well as the
course of the calculated function values according
to (3.11). As one sees, the periodical behaviour
(particularly strong for early times) is not grasped
by the function. The relative error therefor de-
creases with the time, as you can see in figure 3.6,
since the sawtooth behavior is weakening. The send
probability of unseeded players p equals 1/P .

3.1.4 Delay

Mathematical model

Effortful calculations are necessary to calculate the
average delay of the packets. Bookkeeping has to

36

3.1. VERSION 1: TRANSIENT

0 100 200 300 400 500
0

200

400

600

800

1000

Slots

D
el

ay

0 100 200 300 400 500
0.2

0.3

0.4

0.5

0.6

0.7

T
hr

ou
gp

ut

delay sim

delay calc

tp sim

tp calc

Figure 3.5. Progression of the throughput and

delay for 10’000 simulated runs with 20 partic-

ipants and a period length 30. The calculated

courses of the functions (3.11) and (3.24) are

plotted as well.

0 1000 2000 3000 4000 5000
10

−4

10
−3

10
−2

10
−1

10
0

Slot

R
el

at
iv

e
er

ro
r

Throughput
Delay

Figure 3.6. Average error of the calculated re-

sults (3.11) and (3.24) relative to ten thou-

sand simulation runs with 20 players, P=30

and p=1/P. The error values within each period

were combined to compensate the periodical

behaviour of the throughput.

u
(n)
k−1 u

(n)
k u

(n)
k+

u
(n+1)
k−1 u

(n+1)
k u

(n+1)
k+1

d
(n)
k−1 d

(n)
k d

(n)
k+1

d
(n+1)
k−1 d

(n+1)
k d

(n+1)
k+1

pk−1,k pk,k pk+1,k

d̂(d)

d̂(s)

d̂(i)

D S I

Figure 3.7. Illustrates the calculation of the up-

coming delay values (see section 3.1.4). U

stands for the state distribution vector, d for

the delay, p for the transition probabilities. The

three possible transitions are called D, S and I

respectively.

be done for every point in time n what delay for
every possible number of unseeded players is ex-
pected. This information is stored in the vector d(n)

with the elements d(n)
i which are equal to the chance

of beeing in the state i after n timeslots multiplied
by the delay all unseeded players have accumulated
in this case. If, for example, the protocol after 3
time slots is 30% in the first state with an expected
delay of 20 and to 70% in the second state with a
delay of 10, the vector d(3) would be (6, 7). The
initial delay obviously is d(0) = (0, . . . , 0).

Each state i(n+1), except for 0(n+1) and N (n+1),
has three predecessors states: (i − 1)(n+1), i(n+1)

and (i+ 1)(n+1). The corresponding transitions are
denoted by D,S and I respectively (see figure 3.7).
The new delay value d

(n+1)
k therefore consists of

the delay elements of the three paths, denoted by
d̂(d),d̂(s) and d̂(i). Each of these amounts can be
divided up in three components:

37

3. ALOHA WITH INDUCED REGULARITY

do Delay contribution which is based on the delay
already accumulated.

d+ Delay contribution which is added in the cur-
rent time slot.

d− Delay contribution which is discontinued in the
current time slot.

These three delay shares are derived in the fol-
lowing section 3.1.4 and combined to the total delay
in the section after next (section 3.1.4).

Delay shares

Calculation of do To determine the delay con-
tribution do which belongs to a given path, the
old contribution is multiplied by the corresponding
transition probability pij . The contributions there-
fore are (see figure 3.7):

d̂(d)
o = pk−1,k · d(N)

k−1

d̂(s)
o = pk,k · d(N)

k

d̂(i)
o = pk+1,k · d(N)

k+1

This can be summarized to the following equa-
tion:

do
(N+1) = d(N) · P (3.12)

Calculation of d+ The condition uk corresponds
to a unseeded number of players ofNu = N−k. At
the transitions D and S N − k unseeded users did
not send successfully, thereby the delay increases
by the same amount N − k. By multiplying these
values by the corresponding state probabilities u(n)

and transition probabilities p·,k following contribu-
tions arise:

d̂
(d)
+ = u

(n)
k−1 · pk−1,k · (N − k)

d̂
(s)
+ = u

(n)
k · pk,k · (N − k)

The transition I corresponds to N − k − 1
unseeded participant whose transmission attempts

fails and one additional seeded player whose trans-
mission fails as well. For every unseeded partic-
ipant the delay increases by one time slot. Up to
the current time, the seeded players delay was not
represented in the accounting of the delay of the
unseeded players, hence he brings in his complete
accumulated delay - which is alwaly P . Therefore:

d̂
(i)
+ = u

(n)
k+1 · pk+1,k · (N − k − 1 + P)

This can be summerized by the vector represen-
tation as follows:

d+
(N+1) = u(n) · (D+ 	 P) (3.13)

where 	 denotes the element-wise matrix multipli-
cation:

C = A 	 B⇒ cij = aij · bij (3.14)

The matrix D+ is according to d
(d)
+ , d

(o)
+ , d

(i)
+

given by:

D+ =

�
�������

N N − 1
N − 1 + P N − 1 N − 2

N − 2 + P
. . .

. . .
. . .

. . . 0
P 0

�
�������

(3.15)

Calculation of d− Along the paths I and S no
packet is transmitted successfully. Hence, the de-
lay does not decrease:

d̂
(P)
− = 0

d̂
(i)
− = 0

In the case of the transition D exactly one un-
seeded player transmits successfully a packet and
his delay has to be substracted. This values varies,
since it is unknown for how long the lucky player
had to wait for the successful transmissions. Be-
cause every player had the same chance of succeed-
ing, the expected discontinued delay is d(N)

k−1/(N −
k + 1). Hence:

38

3.2. VERSION 2: STEADY

E
[
d̂

(d)
−
]

= pk+1,k ·
d

(N)
k−1

(N − k + 1)

So in the vectorial representation we have:

d−(n+1) = d−(n) · (D− 	 P) (3.16)

where 	 denotes the element-wise matrix multipli-
cation. The matrix D− is given by the elements d(d)

− :

D− =

⎛
⎜⎜⎜⎜⎜⎝

0 1
N
0 1

N−1

0
. . .
0 1

1
0

⎞
⎟⎟⎟⎟⎟⎠ (3.17)

Total delay

The equations (3.12), (3.13) and (3.16) yield:

d(n+1) = d(n) · P + u(n) · (D+ 	 P)−
d(n) · (D− 	 P)

(3.18)

where P stands for the matrix of transition proba-
bilities according to (3.5) and u(n) corresponds to
the state distribution after n steps. D+ and D−
are given by (3.15) and (3.17) respectively. 	 de-
notes the element-wise matrix multiplication in ac-
cordance with (3.14).

The total delay finally consists of the delay of the
unseeded as well as the seeded participants. The
former is given by the sum of the elements of d:

Dunseeded players =
∣∣∣d(N)
∣∣∣
1

=
N∑

i=0

d
(N)
i (3.19)

|v|1 stands for the 1-norm of vector v. The later,
referring to the delay of the seeded players, can
be calculated by examining the delay of a single
seeded player, DPlayeri . The following relations are
valid:

DPlayeri ∈ {0, 1, . . . , P − 1} (3.20)

Pr
[
DPlayeri = k

]
=

{
0 k /∈ [0, P − 1]
1
P k ∈ [0, P − 1]

(3.21)

The expected value of the delay of a seeded
player therefore is P−1

2 , summed over all possible
numbers of seeded players and multliplied by their
corresponding probabilities yields:

Dseeded players = u(n) · (0, 1, . . . , N) · P − 1
2

(3.22)

or for short:

= u(n) · N̆s · P − 1
2

(3.23)

With N̆s = (0, 1, . . . , N). Putting together (3.19)
and (3.23) finally leads to the total delay:

D = u(n) · N̆s · P − 1
2

+
∣∣∣d(N)
∣∣∣
1

(3.24)

3.2 Version 2: Steady

In this section we give a modified version of the
protocol described in section 3.1 on page 33 and the
following to speed up the achievement of regularity.

3.2.1 Procedure

Idea

With the protocol in section 3.1, we tried to get as
many participants as possible to the seeded state, as
this implicates an increased throughput. Although
for every choice N ≤ P after a sufficiently large
period of time, all users will be in seeded state as
we will see in section 3.3.2, in the reality this time
period appears to be small enough either only for
small numbers of users N < 10 or for a suffi-
ciently big period-length P in relation to N . (See
table 3.1 on page 44. To speed up the increase in
regularity the protocol is modified in a manner the
seeded players retain their state and for that reason
the group of unseeded participants decreases faster.

Name of the protocol

To core idea of the protocol is to never let a seeded
player leave this state. The protocol is therefore
named steady as opposed to the transient version
from section 3.1 where the seeded state could be
left.

39

3. ALOHA WITH INDUCED REGULARITY

1 2 3

C, I

S/t = 0

t < P/t← t+ 1

t = P

1/t← 0

q = p q = 0 q = 1

Figure 3.8. State diagram of the protocol de-

scribed in section (3.2). The player stays in

state 1 as long as he has not transmitted a

packet successfully (which means he does not

send (I) or the transmission attempt is affected

by a collision (C)). As soon as a attempt suc-

ceeds (S), the user leaves the first state for

ever. The player, there after, waits P-1 times-

lots before sending in the Pth time slot. Even

if the transmission attempt fails, he stays in

the seeded stage and waits P-1 time slots once

more.

Protocol description

In this method seeded players stick to their strategy
after a collision and do not change to the unseeded
stage. Figure 3.8 shows the state diagram of the
protocol examined in this section. A player sends
with probability p as long as he is unsuccessful in
transmitting (S=1). As soon as a attempt succeeds,
the user behaves deterministically (S=2) and sends
in every P th timeslot remaining quiet the rest of the
time.

When S = 2 (S = 1) means, the considered
player did (did not) transmit a packet successfully
and the delay of the packet is given by i, we have:

qi =

⎧⎪⎨
⎪⎩
p S = 1
0 i < P, S = 2
1 i ≡ 0 mod P, S = 2

(3.25)

Like in section 3.1 all N players are divided up
in groups of seeded and unseeded players of sizeNs

and Nu respectively.

0 1 N − 1 N

s0s1sN−1sN

d1dN

· · ·

Figure 3.9. This figure shows the markov chain

used in section 3.2. The states 0 to N stand

for the corresponding number of seeded users.

Two transition types are possible, named s

and d.

3.2.2 Mathematical model

Markov chain

States The number of seeded players is again in-
terpreted as states of a Markov chain. In contrast to
section 3.1 the seeded participants never leave their
state. We mark the remaining transition probabili-
ties as in section 3.1:

dNu : Xn+1 = N −Nu + 1, Xn = N −Nu

sNu : Xn+1 = N −Nu, Xn = N −Nu

Transition probabilities The number of un-
seeded players decreases if and only if exactly one
unseeded player sends, this happens with probabil-
ityNu p · (1−p)Nu−1, while all seeded participants
remain silent, probability (Nu+P−N)/P . Hence:

dNu =
Nu + P −N

P
·Nu p · (1− p)Nu−1 (3.26)

Since there is only one alternative transition pos-
sible we have sNu = 1− dNu :

sNu = 1−Nu + P −N
P

·Nu p·(1−p)Nu−1 (3.27)

40

3.2. VERSION 2: STEADY

The transition matrix P is therefore given by:

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

sNu 1− sNu

sNu−1 1− sNu−1

.
. . . 1− s1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.28)
At the beginning everyone starts in the unseeded
state hence the starting distribution is u =
(1, 0, . . . , 0). After n slots the probability vector
u(n) equally u · Pn.

3.2.3 Throughput

The throughput at a given number of unseeded
player is denoted by TP�

Nu
. The same considera-

tions as in equation (3.9) are true and we get the
same equation:

TP�
Nu

=
(N −Nu)

P
(1− p)Nu

+
(P −N +Nu)

P
Nu p (1− p)Nu−1

(3.9)

(See figure 3.4 on page 36. After arranging the
elements of equation (3.9) as in section 3.1

T̆P = (TP�
Nu
,TP�

Nu−1, . . . ,TP�
0) (3.10)

we can calculate the expected throughput at a given
time instance n the same way as already stated in
section 3.1:

TP = u(N) · T̆P (3.11)

=
N∑

i=0

u
(N)
i T̆Pi

The average throughput of ten thousand simu-
lated runs in comparison with the calculated result
is plotted in figure 3.10. The total number of users
N as well as the period length P equal 30. The send
probability of unseeded players p was set to 1/P .
Just like in figure 3.5 the simulated throughput in-
creases in batches, but as opposed to the protocol

0 100 200 300 400 500
0

1000

2000

Slots

D
el

ay

0 100 200 300 400 500
0

0.5

1

T
hr

ou
gh

pu
t

delay sim

delay calc

tp sim
tp calc

Figure 3.10. Progression of the throughput and

delay for 10’000 simulated runs with period

length P and participants N equal to 30. The

send probability of the unseeded players p is

1/30. The calculated courses of throughput and

delay are plotted as well.

0 1000 2000 3000 4000 5000
10

−5

10
−4

10
−3

10
−2

10
−1

Slot

R
el

at
iv

e
er

ro
r

Throughput
Delay

Figure 3.11. Average error of the calculated

throughput and delay relative to ten thousand

simulation runs with 30 players, period-length

30 and p=1/30. The error values within each

period were combined (by taking the average)

to compensate the periodical behavior of the

throughput.

41

3. ALOHA WITH INDUCED REGULARITY

u
(n)
k−1 u

(n)
k u

(n)
k+

u
(n+1)
k−1 u

(n+1)
k u

(n+1)
k+1

d
(n)
k−1 d

(n)
k d

(n)
k+1

d
(n+1)
k−1 d

(n+1)
k d

(n+1)
k+1

pk−1,k pk,k

d̂(d)

d̂(s)D

S

Figure 3.12. Calculation of the upcoming delay

values (see section 3.2.4). u(n) stands for the

state distribution vector, d for the delay, p for

the transition probabilities contained in the ma-

trix P. The two possible transitions are called

D and S.

in section 3.1 on page 33 however not sawtooth-
shaped but rather cascaded.

The relative errors made by the approximation is
shown in figure 3.11. The error is small from the
beginning and further decreases very fast with time.

3.2.4 Delay

Figure 3.12 shows how the delay of the unseeded
players is calculated. u stands for the respective
state probability, d for the respective delay, p for
the transition probabilities and n for the time slot.
As opposed to the 3.7 the transition k+ 1 to k is no
longer possible, that is why the new delay consists
only of two components d̂(d) and d̂(s).

For the simple reason that a seeded player stay
does not leave this state, the unseeded participants
have to be in their state forever and be delayed since
the beginning of the protocol for that reason. With

these considerations follows:

d
(n)
k = u

(n)
k · (N − k) · n (3.29)

Let 	 be the elementwise vector multiplication and
N̆u the vector (Nu, Nu− 1, . . . , 0), with this defini-
tion we have:

d(n) = u(n) 	 N̆u · n (3.30)

The total unseeded delay is given by equation
(3.19)

Dunseeded players =
∣∣∣d(n)
∣∣∣
1

(3.19)

=
N∑

i=0

d
(N)
i (3.31)

which can be reduced to

= u(n) · N̆u · n (3.32)

The conditions (3.20) und (3.21) do not apply to
the seeded players any more, since delays greater
than P are possible. Here, nevertheless, the formula
(3.22) is used as an approximation:

Dseeded ≈ u(n) · (0, 1, . . . , N) · P − 1
2

≈ u(n) · N̆s · P − 1
2

(3.33)

Adding up (3.33) and (3.19) yields:

D = u(n) ·
(
N̆u · n+ N̆s · P − 1

2

)
(3.34)

Where N̆u = (N,N − 1, . . . , 0) and N̆s =
(0, 1, . . . , N).

Figure 3.10 shows how the delay calculated af-
ter (3.34) behaves in comparison with an example
simulation with 30 players, a periodlength of 30 as
well and p = 1/30. The delay is not periodical, as
the throughput implies, but rather proceeds like the
calculated course very smoothly.

The deviation of the calculation (3.34) from ten
thousand simulation runs is drawn in figure 3.11.
The biggest error appears in the example after
around 100 time slots and is about 5 per cent. The
relative error does, opposed to the throughput cal-
culation, not decrease and always stays roughly be-
tween 1 and 4 percent.

42

3.3. EVALUATION

3.3 Evaluation

In this section we examine the throughput and
delay of the transient protocol (described in sec-
tion 3.1 on page 33) referred to as version 1 as well
as the steady protocol (described in section 3.2 on
page 39) referred to as version 2. Both versions are
finally compared with the classic ALOHA-protocol
in section 3.3.4 on page 51

Furthermore it is examined how the two proto-
cols behave after long time.

3.3.1 Long term behavior

Case P ≥ N

Absorbing Markov chains Firstly the Markov
chain of both protocols (see figures 3.2 and 3.9 on
pages 35 and 40 respectively) have an absorbing
state: it is impossible to leave the state N in both
versions.

Secondly it is possible to get from every state to
this absorbing state, since the transition probabili-
ties dNu defined in (3.2) on page 35 and (3.26) on
page 40 respectively are none zero for every choice
Nu.

Therefore the Markov chains (3.5) (page 35 and
(3.5) (page 41) are absorbing Markov chains.

To analyze absorbing Markov chains the transi-
tion matrix has to be in the so called canonical form
[GS03]:

P =
(

Q r
0 1

)
(3.35)

0 is a zero row vector of length N , r is a column
vector of length N given by:

r =

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠ (3.36)

and Q a N -by-N matrix with qij = pij . The states
0 to N − 1 are called transient, the last state N is
absorbing.

Both the transition matrix (3.5) (on page 35) and
(3.28) (on page 41) are already in this form.

Probability of absorption A theorem of the ab-
sorbing Markov chain theory says, the probabil-
ity that the process will be absorbed is equal to 1
[GS03]. Since the Markov chains of both transient
and steady protocol have only one absorbing state
(namely the state N) we know for sure, that after
a certain time the processes will be in this state N .
The question is how long it lasts on an average until
all users are seeded and we are therefore in stateN .

Time to absorption To calculate the expected
number of steps before the chain is absorbed, we
set the fundamental matrix for P up. This matrix
denoted by N is given by the following equation
[GS03, Mey00]:

N = (I− Q)−1 (3.37)

where I is a N -by-N identity matrix and Q is de-
fined by (3.35).

Considering the steady protocol, we obtain using
(3.28) and making use of the fact that 1 − sNu =
dNu :

(I− Q) =

⎛
⎜⎜⎜⎜⎝
dNu −dNu

.
. . . −d2

d1

⎞
⎟⎟⎟⎟⎠ (3.38)

The matrix (3.38) can simply be inverted by us-
ing the fact [Mey00]:

A−1 =
1

det(A)
adj(A) (3.39)

where adj(A) is the matrix formed by the cofac-
tors of A called the adjugate of A. Using (3.39) and
(3.38) we get:

(I− Q)−1 =

⎛
⎜⎜⎜⎜⎝

1
dNu

. 1
d1

1
dNu−1

. . . 1
d1

. . .
...
1
d1

⎞
⎟⎟⎟⎟⎠ (3.40)

The fundamental matrix for the second proto-
col has no such neat form when expressed in terms

43

3. ALOHA WITH INDUCED REGULARITY

of the transition probabilities d (3.2), i (3.3) and s
(3.4). We therefore abstain from quoting the ma-
trix and refer to calculating the fundamental matrix
numerically.

The expected number of steps before the chain
is absorbed is now given by the elements ti of the
vector t:

t = Nc (3.41)

where N is defined in (3.37) and c is a column vec-
tor whose entries are all 1. The element ti of the
vector t corresponds to to expected number of steps
it takes to get from state si to the absorbing state.
Since we always start in the first state, we are only
interested in the value t1. We denote this value by
L:

L = (1, 0, . . . , 0) · Nc (3.42)

L is equal to the sum of the first row of N which
can be explicitly written for the second (steady) pro-
tocol version:

L =
1
dNu

+
1

dNu−1
+ · · ·+ 1

d1
(3.43)

The first addend stands for the average time spent at
the first state, the second addend for the time at the
second state and so on. So on average after L time
slots the protocol is in state N .

Table 3.1 shows the value of L for some N -to-
P -combinations for the protocol version 1. As one
sees, the L gets very big very fast if the smallest
possible period length P = N was chosen. In these
cases, the maximum possible regularity (all player
being seeded) is reached only for small groups of
users< 10 foreseeable time. To get to the absorbing
state for bigger groups as well, we have to increase
the value of P . Table 3.1 lists the time it takes to get
to the state N when P ≈ 1.5 ·N (in section 3.4 on
page 53 we go further into this choice of P), as one
can see the value of L doesn’t increase as nearly as
fast as in the first choice of P .

While in the first version of the protocol seeded
players go to the unseeded state if one of their
packet suffers from a collision, it’s very hard to get
all players seeded whenN is big and P nearly equal

N P L P L

2 2 8 3 8
5 5 143 8 51
10 10 5.8 ·103 15 227
15 15 0.25 ·106 23 519
20 20 11 ·106 30 1.2 ·103

50 50 0.24 ·1018 75 31 ·103

Table 3.1. Lists the timeL in slots it takes to get

to the absorbing state of the protocol version

1. At this state the throughput given in (3.47) is

reached. N denotes the number of users, P
the period length, p is set to 1/P .

N P L P L

2 2 6 3 7
5 5 43 8 34
10 10 173 15 97
20 20 689 30 257
50 50 4234 75 852
100 100 16763 150 2020

Table 3.2. Lists the timeL in slots it takes to get

to the absorbing state of the protocol version

2. At this state the throughput given in (3.47) is

reached. N denotes the number of users, P
the period length, p is set to 1/P .

toN (see table 3.1. In the second version of the pro-
tocol, seeded players don’t leave this state. For this
reason, the absorbing state is more easely reached
as table 3.2 illustrates.

Case P < N

Second protocol version The Markov chain from
section 3.2 remains absorbing. In the funda-
mental matrix (3.40) the main diagonal is equal
to dNu , dNu−1, . . . , dN−P+1 and the off-diagonal
−dNu , . . . ,−dN−P+2.

The average time till the maximum throughput is
reached changes to

L =
1
dNu

+
1

dNu−1
+ · · ·+ 1

dN−P+1
(3.44)

44

3.3. EVALUATION

First protocol version - ergodic Markov chain
If the period-length P is smaller than the number of
users N , there is no absorbing state in the Markov
chain for the first (transient) protocol depicted in
figure 3.3 on page 35. Furthermore it’s possible to
go from every state to every state. The matrix P
therefore describes a ergodic or irreducible Markov
chain. Since PP has no zero element the chain is
also regular [GS03].

For these transition matrices the fundamental
limit theorem for regular chains states [GS03]:

lim
n→∞Pn = W (3.45)

Where the limiting matrix W is unique and all rows
are the same vectorπ. So irrespective of the starting
distribution the likelihood of being in of the states
si after a infinite time is equal to πi.

The vector π is called the stationary distribution
since

π = πP (3.46)

As (3.46) shows, we can think of π as a left
eigenvector of the transition matrix P.

3.3.2 Throughput

Case P ≥ N

Course Figure 3.14 shows the throughput of the
first and second protocol subject to the time slot,
when P = 20, N = 17 and p = 0.05. As you
can see, both protocols reach a very high through-
put (given in the upcoming paragraph) the steady
protocol being much faster.

Long term behaviour In section 3.3.2 we saw,
that in both the transient as well as the steady proto-
col, the absorbing state N is reached after a known
expected number of time slots. We are know in-
terested in the throughput at this final state as well
as the intermediate values when not all users are
seeded yet.

The throughput according to (3.9) on page 36
then is equal to:

TP�
N =

N

P
(3.47)

10
1

10
2

10
3

10
4

10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Slot

T
hr

ou
gh

pu
t

TP v1
TP v2

Figure 3.14. Shows the mean throughput of

10’000 simulation runs (as grey lines) for the

first version as well as the second version of

the protocol with N = 17 and P = 20. In

blue and orange respectively the calculated re-

sults are shown. As one can see, the Markov

models worked out in detail in sections 3.1 and

3.2 are well suited.

As one can easily see, when N = P the throughput
is maximized and reaches 1.

Since the optimal throughput you get with the
classical ALOHA-protocol is approximately e−1

the modified ALOHA-protocol outperforms this
version when (using (3.47))

P

e
< N ≤ P (3.48)

we will give a looser upper bound in equation (3.52)
on page 47 when considering the case P ≥ N .

Case P < N

First protocol The Markov chain for the case
P < N is regular and does not have a absorbing
state (see section 3.3.1). So the expected through-
put limit is given by (3.46) and (3.11):

lim
n→∞TP (n) = πT̆P (3.49)

; The blue line in figure 3.15 shows the course of
throughput when 23 participants use the first proto-
col with a period-length P = 20. As you can see

45

3. ALOHA WITH INDUCED REGULARITY

10
1

10
2

10
3

10
4

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Slot

no
rm

al
iz

ed
 th

ro
ug

hp
ut

10

18

20

22

30

(a) Throughput of the stateless protocol (version 1): When
two many users (22 or 30 in this case) are competing,
the steady state π is reached after at most 100 time slots.
In both cases the throughput is smaller than for the case
N = P = 20 (intermittent line), in the case N = 30
the throughput is even smaller than for the conventional
ALOHA-protocol.
When 10 participants compete, the absorbing state is easily
reached and the throughput is equal to 0.5 according to 3.47
which beats the conventional ALOHA-protocol by about 30
percent. 18 users are to much to reach the absorbing state af-
ter 104 time slots, but nevertheless the normalized through-
put outperforms the case N = 10 .

10
1

10
2

10
3

10
4

1

1.5

2

2.5

Slot

no
rm

al
iz

ed
 th

ro
ug

hp
ut

10

18

20

22

30

(b) Throughput of the stateless protocol (version 2): In-
dependent of the number of users the absorbing state is
reached and the final throughput is equal to (3.50). In con-
trast to figure (a), too many users don’t worsen the through-
put that much.

10
1

10
2

10
3

10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Slot

no
rm

al
iz

ed
 d

el
ay

10

18

20

22

30

(c) Delay of the stateless protocol (version 1): With 10,18
or 22 participants the delay is nearly equal to the con-
ventional ALOHA-protocol, though the delay of 18 users
slightly decreases with time. When only 10 users share a
period of P = 20, they can easily reach the absorbing state
and their delay is, according to 3.56a about 40 percent of
the delay in the classical ALOHA protocol.

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

Slot

no
rm

al
iz

ed
 th

ro
ug

hp
ut

10

18

20

22

30

(d) Delay of the stateless protocol (version 2): In contrast to
figure (c), the delay increases without limit when to many
users compete. This is due to the 2 (8) players who are
not seeded and therefore never succeed in sending a packet.
(Please note the logarithmic scale of the y-axis).

Figure 3.13. Shows the course of the throughput (figures a and b) and delay (figures c and d) when using

the first protocol and the second protocol respectively. The period length was set to 20 and the sending

probability in the unseeded state p to 0.05. Normalized means, the values are divided by the respec-

tive values of the case, all users behaving according to the classical ALOHA-protocol and sending with

q = 1/N .

46

3.3. EVALUATION

10
1

10
2

10
3

10
4

10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Slot

T
hr

ou
gh

pu
t

TP v1

TP v2

Figure 3.15. Plot of the throughput of the first

and second protocol when 23 users share a pe-

riod of 20 time slots. The gray lines represent

the average of 10’000 simulation results. As

you can see, the second protocol sends more

than twice as many packets successfully than

the first protocol version.

the values are only slightly bigger than for the con-
ventional ALOHA-protocol (throughput ≈ 0.37).

Second protocol As already mentioned in section
3.3.1 the Markov chain of the second protocol still
is absorbing. Since more users are competing than
the period-length is in length, at this state P users
are seeded while the remainingN−P are unseeded
and therefore send with probability p. In every time
instance exactly one seeded player send. His packet
his transferred successfully, if none of the unseeded
users sends as well. Considering this the throughput
is:

TPN,P,p = (1− p)N−P where N > P (3.50)

The red line in figure 3.15 shows the course
of the throughput when 23 users compete using a
period-length P = 20. As you can see, the steady
protocol clearly outperforms the transient version.

Comparing (3.50) with the approximate through-
put e−1 of the conventional slotted ALOHA–

N
P TP v1 TP v2

1.05 0.421 0.951
1.1 0.411 0.895
1.2 0.397 0.818
1.5 0.348 0.605
2 0.272 0.366
3 0.148 0.134
5 0.033 0.018

Table 3.3. Final throughput when P < N
holds for the transient (TP v1) and the steady

protocol (TP v2). If the number of users

only slightly exceed the period-length P , the

throughput of the first protocol drops heavily

unlike the second protocol. The sending prob-

ability p was set to 1/P .

protocol we get the following condition

N < P − 1
ln(1− p) (3.51)

that must be fulfilled when the second protocol
wants to beat the conventional ALOHA in terms of
throughput. Using (3.51) we can give a looser upper
bound for (3.48):

P

e
< N < P − 1

ln(1− p) (3.52)

Table 3.3 shows the decrease in throughput when
more users take part in the protocol than the period
is in length. The first column indicates the ratio of
the number of users N to the period-length P , the
second column lists the achieved throughput when
using the first protocol, the third column lists the
throughput when using the second protocol. N was
set to 100 (p = 1/P), but similar values result for
other numbers of users.

As one can see, the protocol version 1 is very
sensitive to small transgression of the maximum
number of users. While the second protocol only
loses 1 percent of the maximum throughput when
using 101 users with a period-length of 100, the first
version loses 57 per cent in the same setting.

47

3. ALOHA WITH INDUCED REGULARITY

10
1

10
2

10
3

10
4

1

1.5

2

2.5

Slot

no
rm

al
iz

ed
 th

ro
ug

hp
ut

5

10

20

50

(a) Throughput of the transient protocol (version 1): As
listed in table 3.1 it takes 143 (5800) slots on average until
all users are seeded when there are 5 (10) participants. At
this state, the throughput is equal to 1 and about 2.5 higher
than for the classical ALOHA-protocol. When 20 or even
50 users compete, the seeded state cannot be reached in rea-
sonable time. The throughput, however, is still about 20
percent higher than for the classical ALOHA-protocol.

10
1

10
2

10
3

10
4

1

1.5

2

2.5

Slot

re
la

tiv
e

th
ro

ug
hp

ut

5
10
20
50

(b) Throughput of the steady protocol (version 2): The
absorbing state where all users are seeded is much faster
reached (see table 3.2). Even when 50 users compete, they
reach the absorbing state after approximately 4200 on aver-
age. The maximum throughput is 1, but since the through-
put of the classical ALOHA-protocol is larger for smaller
numbers of participants the normalized throughput is a lit-
tle bit higher for 50 users than for 5 participants.

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Slot

no
rm

al
iz

ed
 d

el
ay

5
10
20
50

(c) Delay of the transient protocol (version 1): As already
mentioned in the caption of figure (a), the absorbing state is
reached after 104 when the number of participants is equal
to 5 and 10. At this state, the mean delay is equal to (3.53)
which is approximately 0.18 (see 3.56b). For greater num-
ber of users the delay is nearly of the same size as for the
classical ALOHA-protocol.

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Slot

no
rm

al
iz

ed
 d

el
ay

5
10
20
50

(d) Delay of the steady protocol (version 2): For all num-
bers of participants the absorbing state is reached, where the
normalized delay is equal to approximately 0.18 according
to equation (3.56b)

Figure 3.16. Course of the delay and throughput of the two versions of variable-q-ALOHA protocol relative

to the classic ALOHA-protocol when using the stateless protocol and the two state protocol respectively.

Four different number of users are considered (N = 5,10,20,50). The periodlength equals the number of

players P = N , p is equal to 1/N .

48

3.3. EVALUATION

Figures 3.13(a) and 3.13(b) on page 46 shows the
course of the throughput for the first and the second
protocol respectively.

3.3.3 Delay

In this section the total delay in the protocol ver-
sions 1 and 2 are calculated and compared with the
conventional ALOHA–protocol.

Case P ≥ N

Both the transient as well as the steady protocol
have the same absorbing state and for this reason
the same limiting delay.

Delay of protocol version 1 and 2 As seen in sec-
tion 3.3.2 the transition matrix describes an absorb-
ing Markov chain as long as the number of users N
is less or equal the period length P . Since Nu = 0
and Ns = N at the absorbing state, the delay only
consists of the total delay of seeded players:

Dm = Dseeded players

which is according to (3.22)

= lim
n→∞ u(n) · (0, 1, . . . , N) · P − 1

2

since limn→∞ u(n) = (0, . . . , 0, 1)

= N
P − 1

2
(3.53)

Figure 3.17 shows the course of delay of both
the transient and the steady protocol. Both delays
first increase and later drop to the long term value
calculated above. Using first protocol, however, it
takes much more slots (about a hundred times more)
to reach this state.

Delay of the conventional ALOHA–protocol
The expected value of the delay of a single player in
the classic ALOHA-protocol after T Slots is equal

10
1

10
2

10
3

10
4

10
5

100

200

300

400

500

600

700

Slot

D
el

ay

DL v1
DL v2

Figure 3.17. Shows the total delay for the same

simulation runs used in figure 3.14. The cal-

culated courses (blue and orange respectively)

deviate a little bit (at most 3 percent) from the

simulation results when the peak values are

reached, but are nevertheless sufficiently pre-

cises.

to:

d =
T−1∑
k=0

k · (1− Psuc)k · Psuc + T (1− Psuc)T

= Psuc(1− Psuc)
T−1∑
k=0

k · (1− Psuc)k−1

+ T (1− Psuc)T

= (1− Psuc)
1− (1− Psuc)T−1(T − PsucT − Psuc)

Psuc

+ T (1− Psuc)T

Where Psuc is the probability that a particular user
transmits a packet successfully. This value is given
by:

Psuc = q · (1− q)N−1

where q is the send-probability (see also 1.3.2) on
page 19).

The total delay D is obtained by multiplying d
by N : D = Nd. The total delay after an infinitly

49

3. ALOHA WITH INDUCED REGULARITY

long time period equals:

Dc = N
1− pS

pS

= N
1− q · (1− q)N−1

q · (1− q)N−1
(3.54)

This value is minimized when q = 1
N what at

the same time maximizes the total throughput. For
sufficiently large N when q = 1

N we have:

(1− q)N−1 ≈ e−1

And therefore

Dc ≈ N(Ne− 1) (3.55)

Comparison When comparing the expected de-
lay of the variable-q-ALOHADm with the classical
ALOHA-protocol Dc when using the optimal q in
the latter case we get the following result (Take into
account that for the modified protocol the sending
probability p is not used any more and is therefore
no longer important):

Dm

Dc
=

P − 1
2(Ne− 1)

(3.56a)

≈ 1
2e

P = N � 1 (3.56b)

Therefore, the modified protocol in the final state
beats the classical protocol in terms of accumulated
delay, when

P + 1
2e

< N ≤ P

Case P < N

When the number of users N exceeds the period
length P , the Markov chain of the first protocol is
regular, while the chain of the second protocol be-
ing absorbing. For this reason we expect the delay
to be different considering long term behavior.

First protocol After infinite many time slots the
state probability vector is given by π (see (3.46)).
For n→∞ the fundamental limit theorem states:

lim
n→∞ d(n+1) = d(n)

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

Slot

D
el

ay

DL v1
DL v2

Figure 3.18. Shows the delay of the first and

the second protocol when 23N users compete

and the period-length P is set to 20 time slots.

The average of 10’000 simulation run is plotted

as a green line but, since the calculation per-

fectly matches the reality, is covered by the or-

ange and blue line. As mentioned, the delay in-

creases unlimited when P < N holds in the

second protocol version.

together with equation (3.18) on page 39 the steady
delay of the unseeded players δ we obtain:

δ = π · (D+ 	 P) · (I− P + D− 	 P)−1 (3.57)

Using the equation (3.24) on page 39 the expected
total delay for the first protocol after a infinite num-
ber of time slots is given by:

lim
n→∞D(n) = π · N̆s · P − 1

2
+ |δ|1 (3.58)

where π and δ are defined by (3.46) and (3.57) re-
spectively.

The blue lines in figure 3.18 show the course of
the delay when 23 participants use the first protocol
with P = 20.

Second protocol When using the steady protocol
we have P seeded players who regularly send pack-
ets and N − P participants who never succeeded
in transmitting their packets. Their delay therefore

50

3.3. EVALUATION

constantly increases with time! At the absorbing the
we get

lim
n→∞D(n+1) −D(n) = N − P

In terms of delay, the case P < N must be
avoided at all costs when using the steady proto-
col! The red lines in figure 3.18 show unbounded
growth of the delay when 23 participants use the
second protocol with P = 20.

Figures 3.13(c) and 3.13(d) on page 46 shows the
course of the delay when using the first and the sec-
ond protocol respectively.

3.3.4 Comparison with the conventional
ALOHA

In this section we compare the the transient and
the steady protocol with the conventional ALOHA
protocol assuming long term behavior. We further
assume, the participants don’t know how many they
are and estimate their number at 20.

The best choice in both protocols would be P =
N hence we use P = 20. The sending probability
is set to p = 0.05.

The conventional ALOHA-protocol chooses the
optimal sending probability according to q = 1/N
which is q = 0.05 for the mentioned estimation.

Transient protocol

Throughput Figure 3.19 shows the normalized
throughput of the transient protocol. Normal-
ized means, the respective values are divided by
the throughput obtained by using the conventional
ALOHA-protocol with the corresponding number
of users. A normalized throughput of 1 therefore
means, both protocol reach the same throughput
while the transient protocol outperforms the stan-
dard ALOHA when the throughput is bigger than
one and vice versa.

As you can see, the transient protocol outper-
forms the conventional ALOHA in any case, but the
difference is biggest for N ≈ P and N ≤ P .

0 10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

number of users N

no
rm

al
iz

ed
 th

ro
ug

hp
ut

P=20

Figure 3.19. Throughput of the first version for

P = 20 and p = 1/20 normalized by the re-

spective throughput of the classical ALOHA-

protocol where q = 1/20. The ratio increases

up to the maximum of ≈ 2.6 at N = P . As

soon asN > P the ratio drops almost to 1.

Delay The delay values obtained were normal-
ized the same way as the throughput, but in this
case values smaller than 1 mean, the transient pro-
tocol is better than the conventional ALOHA and
vice versa. Figure 3.20 shows the course of the nor-
malized delay. As you can see, the transient pro-
tocol clearly outperforms the standard ALOHA for
N ≤ P , but results in a little bit bigger delays when
N > P .

Steady protocol

Two compare the throughput and delay of the
steady protocol, we use the same normalizing as in
section 3.3.4.

Throughput Figure 3.21 shows the normalized
throughput. The results for number of participants
N ≤ P tally with the results using the transient pro-
tocol. But instead of dropping fast thereafter, the
throughput decreases in a slower manner.

Delay Figure 3.22 shows the normalized delay.
Again the values for N ≤ P tally with the result

51

3. ALOHA WITH INDUCED REGULARITY

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

number of users N

no
rm

al
iz

ed
 d

el
ay

P=20

Figure 3.20. Shows the ratio of the delay in the

stateless protocol (version 1) to the delay in the

conventional aloha protocol for different num-

bers of participants. The period-lengthP is set

to 20. The sending probability in the classical

ALOHA-protocol q as well as the probability q
is set to 1/20.

0 10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

number of users N

no
rm

al
iz

ed
 th

ro
ug

hp
ut

P=20

Figure 3.21. Throughput ratio for the same set-

ting as in figure 3.19. The results for numbers

of participants N smaller or equal the period-

length P tallies with the result for the first ver-

sion. But instead of dropping fast, the through-

put ratio decreases in a slower manner.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

number of users N

no
rm

al
iz

ed
 d

el
ay

P=20

Figure 3.22. Shows the ratio of the delay in the

two state protocol (version 2) to the delay in the

conventional aloha protocol for different num-

bers of participants. The period-lengthP is set

to 20. The sending probability in the classical

ALOHA-protocol q as well as the probability q
is set to 1/20.

For 1 ≤ N ≤ 20 the results tallies with the

results in figure 3.20, when N > P the delay

grows unlimitedly and the delay ratio → ∞.

52

3.4. OPTIMAL PERIOD LENGTH P

using the transient protocol. When the number of
users exceeds the period-length, the delay grows to
infinity and so does the normalized delay.

3.4 Optimal period length P

For this reason it may be wise to choose the pe-
riod length more generously, especially when us-
ing the first protocol and large numbers of partici-
pants. By increasing P , the maximum throughput
decreases to the value N/P according to equation
(3.47). But on the other hand this value is more eas-
ily reached, since there are more "‘seeded states"’
to be shared among the unseeded users. The same
thing holds for the delay, the final value increases
from N(N − 1)/2 to N(P − 1)/2 (see (3.53)), but
the increase speed to absorbing state might offset
this deterioration.

The question now is: Given a number of partic-
ipants N and either the first or the second protocol
according to 3.1 and 3.2 respectively, what is the
optimal choice of P such that:

First Question: The delay is minimized.

Second Question: The throughput is maximized.

after T time slots. Clearly if T → ∞ the answer
to both question is Popt = N . Figure 3.23 show
the best choice of P considering the delay and the
throughput of the first and second protocol respec-
tively. The number of participants is set to 50.

Considering the delay using the first protocol, the
period length should almost be doubled. When it
comes to throughput, the optimum period length is
about 70 percent bigger than the number of users.
Both scales don’t decrease much when waiting a
longer time T > 2000.

If we look at the second protocol and try to opti-
mize the delay, the period length must be increased
by 40 percent at most when measuring after 500
time slots. The ideal additive decreases fast in the
course of time and is already under 10 percent af-
ter 5000 time slots. Considering the throughput, an
elevated period length is never advisable, for small
measuring times T < 500 the optimum is reached
in fact for P < N !

0 1000 2000 3000 4000 5000
40

50

60

70

80

90

100

110

Slot

op
tim

um
 p

er
io

dl
en

gt
h

P

Delay V1

Delay V2

Throughput V1

Throughput V2

Figure 3.23. Shows the optimal period lengthP
after a given time when 50 participants use the

first and the second protocol version respec-

tively. In blue, the optima in terms of delay are

given, while the red line represent the optima

considering the throughput.

As one can see, to minimize the delay big-

ger period-lengths P are necessary than when

minimizing the throughput. Furthermore the

values considering the second protocol are

much lower.

53

3. ALOHA WITH INDUCED REGULARITY

0 20 40 60 80 100
0

50

100

150

200

number of users N

op
tim

um
 p

er
io

dl
en

gt
h

P

DL v1
DL v2

Figure 3.24. Shows the optimum value of P
when considering the delay after 1000 time

slots subject to the number of participants N
for the first and second protocol respectively.

The dotted lines represent the ratio 2 (first pro-

tocol) and 1.4 (second protocol).

To examine the optimum period length P for var-
ious numbers of participants, we set the decisive
time instance T to 1000 slots. Figure 3.24 shows
the optimum values of P when considering the de-
lay. As already mentioned, the values for the first
version of the protocol are significantly larger than
for the second version. The ratio Popt/N is almost
constant:

Popt DL,V1

N
≈ 2

Popt DL,V2

N
≈ 1.4

Figure 3.25 shows the optimum period-length in
terms of throughput. As for the delay, the ratios
Popt/N are almost constant:

Popt TP,V1

N
≈ 1.5

Popt TP,V2

N
≈ 1

3.5 Employment of the variable-q-
strategies by unfair participants

In this section, it will be examined how the
strategies from section 3.1 and 3.2 on pages 33 and
39 respectively can be employed by unfair partic-
ipants. The remaining fair participants behave ac-

0 20 40 60 80 100
0

50

100

150

200

number of users N

op
tim

um
 p

er
io

dl
en

gt
h

P

TP v1
TP v2

Figure 3.25. Plot of the optimum values of the

period-length P in terms of throughput for the

first and second protocol respectively. The dot-

ted lines represent the ratio 1.5 (first protocol)

and 1 (second protocol).

cording to the classic ALOHA-protocol described
in chapter 1.

3.5.1 Employment of the transient protocol

Markov chain

N users participate altogether - Nf of them behave
according to the classic Aloha protocol with send
probability q and the remaining N − Nf = Nu

of them according to the protocol from section 3.1.
These Nu participants are further divided into a
group of the seeded players (size Ns) and a group
of the free players (size Nu).

The number of seeded users Ns is interpreted as
states of a Markov chain like in the section 3.1.2 on
page 34. However in opposition to that the chain is
ergodic even for the case P ≤ Nu.

Because of the fair participants, the three tran-
sition probabilities (3.2), (3.4) and (3.3) change.
In order to decrease the number of unseeded play-
ers, exactly one of them must send (probability
Nu p (1− p)Nu−1), and all participants seeded al-
ready must remain quiet (probability 1 − Ns

N). Ad-
ditionally, however, all the fair players mustn’t send

54

3.5. EMPLOYMENT OF THE VARIABLE-Q-STRATEGIES BY UNFAIR PARTICIPANTS

as well (probability (1−q)Nf
. Hence equation (3.2)

becomes:

dNu =
(P −Nu +Nu)

P
Nu p (1− p)Nu−1

· (1− q)Nf

(3.59)

(Please note that q stands for the send probability
of the fair users while p denotes the send probabil-
ity of unfair users who are at the unseeded stage.)
The increase in number of unseeded players occurs,
when a seeded player sends (Ns

Nu) and at the same
time, at least an unseeded or fair participant sends
as well. Therefore equation (3.3) turns to:

iNu =
(Nu −Nu)

P

(
1− (1− p)Nu (1− q)N f

)
(3.60)

The probability s can be obtained simply by sub-
stracting (3.59) and (3.60) from 1.

sNu =
(P −Nu + Nu)

P

·
(
1−Nu p (1− p)Nu−1 (1− q)Nf

)
+

(Nu −Nu)
P

(1− p)Nu (1− q)Nf

(3.61)

Which means either no unseeded player transmits a
packet successfully while no seeded player sends or
a seeded player makes a successful transmission.

With the transition probabilities (3.59), (3.60)
and (3.61) we can compile the transition probability
matrix (3.5) (if N ≤ P) or (3.6) if (N > P). (In
this section i0 > 0 and s0 < 1 due to the existence
of fair players).

Throughput

For the total average throughput of unfair partici-
pants, we need the probability distribution and, on
the other hand, the throughput for a given number of
unseeded players. At beginning, no one of the (un-
fair) participants is at the seeded stage. The starting

distribution therefore is u = (1, 0, . . . , 0) as in sec-
tion 3.1. After n time slots we have u(n) = u · Pn

(see equation (3.8)). The throughput of unfair play-
ers for a certain number of unseeded players corre-
sponds to the likelihood that a seeded player (first
summand) or a unseeded player (second summand)
make a successful transmission attempt:

TP�unfair
Nu

=
(Nu −Nu)

P
(1− p)Nu (1− q)Nf

+
(P −Nu +Nu)

P
Nu p (1− p)Nu−1

· (1− q)Nf

(3.62)

Note that equation (3.62) can be obtained
by multiplying (3.9) by (1 − q)Nf

. Af-
ter putting together the elements (3.62) in

descending order in the vector T̆P
unfair

=
(TP�unfair

Nu
,TP�unfair

Nu−1 , . . . ,TP�unfair
max(N−P,0)) the total

throughput of unfair players after n time slots is
TPunfair = u(n) · T̆P.

A fair player transmits a packet successfully, if
and only if:

1. He is the only fair player who sends
(probability q(1− q)Nf−1).

2. No seeded player sends
(probability 1−Ns/P).

3. No unseeded player sends
(probability (1− p)Nu).

After replacing Ns by Nu−Nu, multiplying the
three probabilities above we get the total through-
put of fair players for a given number of unseeded
(unfair) participants after multiplying the result by
Nf :

TP�fair
Nu

= Nfq(1− q)Nf−1·(
1− Nu −Nu

P

)
· (1− p)Nu

(3.63)

The total throughput of the group of fair par-
ticipants can be obtained by multiplying the prob-

ability distribution u(n) by the vector T̆P
fair

=
(TP�fair

Nu
,TP�fair

Nu−1, . . . ,TP�fair
max(N−P,0)).

55

3. ALOHA WITH INDUCED REGULARITY

5 10 15 20
0

0.2

0.4

0.6

0.8

1

N
unfair

gr
ou

p
th

ro
ug

hp
ut

unfair var q
unfair const q
fair var q
fair const q

Figure 3.26. Shows the total throughput of

unfair and fair players using the variable-q-

protocol from section (3.5.1) as well as the opti-

mal constant-q-protocol from section (1.4.1) on

page 19. The dotted lines shows the through-

put that would result, when all players bee-

ing fair and sending with constant probability

q = 1/N . The total number of users was

20, the fair users did send with probability

1/20. The unfair players used P = Nu and

p = 1/P .

Figure 3.26 shows the total throughput of unfair
players, when they behave like it is described in this
section. The period-length was set to the number of
unfair users Nu and p = 1

P . The fair players used a
q equal to 1/N . In lighter colors, the throughput of
the protocol form section 1.4.1 on page 19 is shown.
As you can see, the variable-q-protocol does worsen
the throughput of fair players nearly the same way
as the protocol from section 1.4.1 does but enhances
the throughput of unfair players a little bit more, es-
pecially for higher fractions (shown with light gray
bars).

Delay

Given the transition probabilities (3.59), (3.60) and
(3.61) we can calculate the delay of unseeded play-
ers according to section 3.1.4 on page (36).

3.5.2 Employment of the steady protocol

The steady protocol from section 3.2 on page 39
can also be employed by unfair users. As we did in
section 3.5.1, we first have to modify the transition
probabilities of the Markov chain. The throughput
and delay are given thereafter.

Markov chain

Again, we set up the Markov chain at first. The par-
ticipants are divided into the group of the fair and
unfair participants like we did in section 3.5.1, the
latter of which is divided further into seeded and
unseeded players. Even with the existence of fair
participant the number of seeded players cannot de-
crease. That’s why we only have to calculate two
state transitions.

A decrease of unseeded players only takes place
if exactly one of them sends and both the seeded
as well as the unseeded participants remain silent.
Hence:

dNu =
Nu + P −Nu

P
·Nu p · (1− p)Nu−1

· (1− q)Nf

(3.64)

So the only difference to equation (3.26) is the fac-
tor (1 − q)Nf

. The probability to remain at a stage
clearly is equal to 1− dNu :

sNu = 1−
(Nu + P −N

P

·Nu p · (1− p)Nu−1 · (1− q)Nf
) (3.65)

The transition matrix P is given in equation
(3.28) on page 41 where s is given in (3.65) and
d has been replaced by 1−s. The last stateN (or P
if N > P) is absorbing and so is the whole Markov
chain.

The probability vector u(n) again equals
uPn where u denotes the starting distribution
(1, 0, . . . , 0).

56

3.5. EMPLOYMENT OF THE VARIABLE-Q-STRATEGIES BY UNFAIR PARTICIPANTS

Throughput

The throughput for a given number unseeded player
at an infinite time instance is denoted by TP�unfair

Nu

and corresponds to the probability either a pack-
age of a seeded player (first addend in the following
equation) or a package of a unseeded player (sec-
ond addend) is transferred successfully and we get
the same result as in (3.62) on page 55. The total
throughput of unfair participants results after com-
bining the elements (3.62) the same way we did in
section 3.5.1.

The same considerations as in section 3.5.1 also
apply for the total throughput of fair participants
at a particular Nu and hence the throughput is ob-
tained by combining the elements (3.63) on page 55
and multiplying the result by the probability distri-
bution u(n) afterwards.

Figure 3.27 shows the throughput of the unfair
players, that results from beeing in the absorbing
state. In this state, all (unfair) users are seeded as
long as P ≥ N holds. Therefore, the total through-
put is given by (3.62):

lim
n→∞ TP(n)

unfair = TP�unfair
max(0,N−P)

what becomes ∀P ≥ N :

=
Nu

P
· (1− q)Nf

(3.66)

and ∀P < N :

= (1− p)Nu−P (1− q)Nf
(3.67)

The throughput of fair users is equal to:

lim
n→∞ TP(n)

fair = TP�fair
max(0,N−P)

where TP�fair is given in (3.63). Hence the through-
put becomes:

= Nfq(1− q)Nf−1

(
1− Nu

P

)
(3.68)

when P > N and

= 0 (3.69)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

N
unfair

gr
ou

p
th

ro
ug

hp
ut

var q Ver. 1
var q Ver. 2
const q

Figure 3.27. Shows the total throughput of the

unfair group when they behave according to

the protocol described in section (3.5.2). As

comparison, the throughput was drawn, that

the unfair group reaches if it behaves like in-

dicated in sections (3.5.1) and (1.4.1) respec-

tively. The dotted lines shows the through-

put that would result, when all players bee-

ing fair and sending with constant probability

q = 1/N . The total number of users was

20, the fair users did send with probability

1/20. The unfair players used P = Nu and

p = 1/P .

57

3. ALOHA WITH INDUCED REGULARITY

when P ≤ N

The throughput of all fair participants therefore
decreases by the factor (1 − Nu

P when N < P and
become zero as soon as N ≥ P .

Since we know now which throughput results
from the absorbing state, we want to examine (like
we did in section 3.3.2 on page 45 how long it lasts
on average until this state is reached.

To answer this question, we calculate the funda-
mental matrix N according to (3.37) on page 43. We
get the same result, since Q has the same structure
even with the presence of fair participants. There-
fore L is given by the same equation (3.43) on page
44. As we already mentioned before the probabili-
ties d given in (3.64) are equal to (3.26) on page 40
except for the constant factor

α = (1− q)Nf
(3.70)

On the basis of (3.43) we see, that the average
time until the unfair players reach the absorbing
state is increased by the factor α due to the exis-
tance of fair users.

Delay

The packets of the unseeded players are delayed
since the beginning and we get the same total de-
lay of unseeded player as in section 3.2:

Dunseeded players = u(n) · N̆u · n (3.32)

As in section 3.2 it may take multiple times to for
a seeded player to transmit his packet successfully.
Since Nf send with probability q at every time in-
stance, the probability a packet of a seeded player
collides is

P seeded
col ≈ 1− (1− q)Nf

(3.71)

where we ignored the unseeded players. Given the
probability (3.71) we can calculate the expected

number of attemptsA a seeded users needs to trans-
mit a packet:

A =
1
Pcol

=
1

1− (1− q)Nf (3.72)

The total delay of seeded players can now be es-
timated by multiplying the result (3.33) on page 42
by A:

Dseeded ≈ u(n) · N̆s · P − 1
2
· A (3.73)

When Nu ≤ P the delay ist therefore increased
by A given in (3.72).

58

Chapter 4

Cost models

4.1 Two simple introductive examples

In this section, two simple cost-models are ex-
amined: Firstly, costs per transmission attempt and
secondly, costs for each time slot a packet is de-
layed, called delay costs.

4.1.1 Transmission costs

For each transmission attempt, costs of quantity
α arise. For each successful transmission a partic-
ipant is credited with one income unit. Let the in-
spected player 1 send with constant probability q′

and the remaining N − 1 players with probability
q. Therefore costs of size q′α per time slot arise.
The probability of a successful transmission - which
is equal to the income per time slot - is equal to
q′(1− q)N−1. Therefore the gain function is:

Eper slot = q′
(
(1− q)N−1 − α)

(Please note, that gain is defined as the difference
between income and costs: Eper slot = income per
slot - costs per slot).

Three different cases depending on q exist:

(1− q)N−1 > α: The expected gain is proportion-
ally to the sending probability of the first
player. The best choice for player 1 therefore
is to constantly send.

(1− q)N−1 = α: The gain is always zero, inde-
pendent of the choice q′.

(1− q)N−1 < α: The gain Eper slot can be at most
0 (when q′ = 0), since the sending costs

are bigger than the expected gain. Therefore
player 1 will not send any packet.

4.1.2 Delay costs

In this section the following model should be ex-
amined:

• For each successfully sent packet a income of
1 is credited.

• For each time slot, a packet has to wait for it’s
transmission, the user is charged with costs of
the scale of α.

A packet which is delayed by d time slots and then
sent therefore leads to the following gain per time
slot:

Eper slot =
1− α · d
d+ 1

(4.1)

The probability that player 1 sends is constant
and equal to q′. The remaining N − 1 players send
with probability q. If player 1 sends, his packet will
collide (P ′

col), if at least one of the remaining partic-
ipants sends, hence P ′

col = 1− (1− q)N−1. On the
other hand, in a given time slot player 1 transmits a
packet with probability q′(1− P ′

col).
Let the random variable D denote the number of

time slots the packets of player 1 are delayed before
transmission. The probability distribution of D is
equal to:

Pr [D = d] =
[
1− q′(1− P ′

col)
]d · q′(1− P ′

col)
(4.2)

59

4. COST MODELS

The expected gain Eper slot using (4.1) and (4.2)
is given as:

E[Eper slot] =
∞∑

d=0

Pr [D = d] · 1− dα
d+ 1

= q′(1− P ′
col)

∞∑
d=0

([
1− q′(1− P ′

col)
]d

·(1 + α)− (d+ 1)α
d+ 1

)

After substituting [1− q′(1−P ′
col)] = p and q′(1−

P ′
col) = C we have:

E[Eper slot] = C(1 + α)
∞∑

d=0

pd 1
d+ 1

(4.3)

− Cα
∞∑

d=0

pd (4.4)

The second added of the latter equation (4.4)
stands for a geometric series. The series represented
by the first added (4.3) can be simplified by using
[Pap01]:

ln
(

1
1− x

)
=
x1

1
+
x2

2
+
x3

3
+ . . .

Finally the expected gain is:

E[Eper slot] = C(1 + α)
1
p

ln
(

1
1− p

)
(4.5)

− Cα 1
1− p (4.6)

with

C = q′(1− P ′
col)

p =
(
1− q′(1− P ′

col)
)

4.2 Delay dependent sending probability

As in chapter 3 on page 33 the players send with
a delay-dependent probability (the send probabil-
ity depends on the delay, that the current package
waits for transmission). Here, however, effects, that
the players fall into some kind of deterministic state

-1 0 1 2 3

1− λ

λ

success

collision / no attempt

· · ·

Figure 4.1. Illustrates the model used in this

section. At stage -1 the participant waits for

a packet to be generated, if this happens, the

user tries to send the packet immediately within

the same time slot (hence the dotted line). As

long as the packet is not transferred success-

fully, the delay (giving the name to the states) is

increased and the user goes to a higher state.

As soon as a transmission attempt succeeded,

the user returns to the waiting state -1.

in which they send alternately (see chapter 3) by a
clever choice of the sending probabilities qi, should
be avoided. Therefore, after each transmission the
participant has to wait for a random amount of time,
modeled by a Poisson process.

4.2.1 Variable names

Each participant i (1 ≤ i ≤ N) either has a
packet to send and his state is given by the number
of time slots j passed since the arrival of the packet,
s(i) = j, j ≥ 0, or he waits for a packet and is in
the state s(i) = −1. Therefore the following states
are possible:

s(i) = {−1, 0, 1, . . . } 1 ≤ i ≤ N

Figure 4.1 shows the model used in this section.
λ defines the time a users has to wait for a new
packet. When a new packet arrives, the user tries
to send it in the same time slot (dotted line).

The delay of player i at a given state s(i) = j is
equal to j if j ≥ 0 and is not defined if j = −1.

p
(i)
k denotes the probability the player i is at the

state s(i) = k. Let the sending probability of player

60

4.2. DELAY DEPENDENT SENDING PROBABILITY

i at a given state be:

Pr
[
Player i sends|s(i) = k

]
= q

(i)
k

Clearly, q(i)−1 = 0. If player i tries to transmit a
packet in the current time slot, we set A(i) = 1 and
A(i) = 0 otherwise. P ′(i)

col (k) stands for the prob-
ability of a packet collision, if player i at state k
sends (P ′(i)

col (k) = Pr
[
collision|A(i), s(i) = k

]
.

Finally, the random variable D(i) denotes, how
long a packet of player i has to wait on average until
successful transmission. 0 ≤ D(i)

4.2.2 Calculations

In the following we assume, every participant be-
haves the same way and therefore we can omit the
player-index i in most cases. With Pr [D = d] de-
noting the probability a packet is delayed by exactly
d time slots before transmission and E[W] standing
for the expected waiting time at the state−1 we can
calculate the probability, that a user is at state k:

pk =
∑∞

d=k Pr [D = d]
E[W] +

∑∞
d=0(d+ 1)Pr [D = d]

∀k ≥ 0

and with
∑∞

d=0 dPr [D = d] being the expected de-
lay E[D]:

=
1

E[W] + E[D] + 1
·

∞∑
d=k

Pr [D = d] ∀k ≥ 0

(4.7)

The share of time spent waiting for new packets is:

p−1 =
E[W]

E[W] + E[D]
(4.8)

Since being in state k means, the player was at
state k − 1 before, the values of pk are monotonic
increasing ∀k ≥ 0. On the other hand, p−1 can be
smaller than any other pk due to the fact, that the
player directly goes to state 0 if a packet is gener-
ated.

Since a player at state −1 does not generate a
new packet with likelihood 1−λ, the expected num-
ber of time slots spent waiting is:

E[W] =
1
λ
− 1 (4.9)

(Please note, since the user can send a generated
packet within the same time slot, the addend −1
occurs).

To simplify the calculations we assume, that
P ′

col(k) does not depend on the state k. A packet
being sent after d time slots means, the packet has
been delayed for d time slots and successfully sent
in the d+ 1th time slot. Therefore we have:

Pr [D = d] =
(
(1− q0) + q0P

′
col

)
· ((1− q1) + q1P

′
col

)
· · ·
· ((1− qd−1) + qd−1P

′
col

)
· (qd(1− P ′

col)
)

what is equal to

Pr [D = d] =
d−1∏
k=0

(
1− qk(1− P ′

col)
)

· (qd(1− P ′
col)
)

(4.10)

After having calculated the probability distribu-
tion pk (equations (4.7) and (4.8)) and the distri-
bution of the delay D (4.10) there is a third value
that ought to be considered, the collision probabil-
ity P ′

col:

P ′
col = Pr

[
collision|A(j) = 1

]
= 1−

N∏
i=1
i�=j

Pr
[
A(i) = 0

]

= 1−
(

Pr
[
A(i) = 0

])N−1

= 1−
(∞∑

k=0

(
pk(1− qk)

))N−1

(4.11)

Where
∑∞

k=0

(
pk(1−qk)

)
can be interpreted as the

expected sending probability of any player.
Therefore the dependencies of the equations

(4.7), (4.10), (4.11) and the parameters q and λ are
(see figure 4.2):

• pk = f(D,λ)

61

4. COST MODELS

P ′
col D

p qλ

Figure 4.2. Shows the dependencies of the

equations (4.7), (4.10), (4.11) and the parame-

ters q and λ on each other. An arrow from A

to B means, the equation for A contains B. As

we can see, by substitution no formula for (4.7),

(4.10) or (4.11) can be given, such that it only

contains q and λ

• D = g(q, P ′
col)

• P ′
col = h(p, q)

p and q stand for the vectors respectively
[p0, p1, . . .] and [q0, q1, . . .]. Due to the mutual de-
pendencies of the equations derived in this section,
no formula for the probability distribution of D
(4.10) depending only on the parameters λ and q
can be given, but distribution clearly can be calcu-
lated using numerical approaches.

4.2.3 Special relations

The inverse of the sum of the mean delay in-
creased by 1 and the mean waiting time E[W]
equals the throughput TP:

TP =
1

E[D] +
1
λ

(4.12)

The probability of being at state p0 is equal to the
inverse of the mean delay increased by one:

p0 =
1

E[D] + 1
(4.13)

4.2.4 General cost model

Now that we know the distribution of the delay
D we define the costs of packet transmissions as
follows:

C =
∞∑

k=0

αk · pk (4.14)

For every successful transmission, γ units are
credited. The task now is to maximize the gain per
time slot:

G = γTP− αk · pk (4.15)

We focus on two choices of αk:

First cost model

αk =

{
0 k < D
1 k ≥ D (4.16)

Hence, for every time slot a packet is overdue re-
garding a deadline D, one cost unit is charged.

Second cost model Secondly we consider the
cost model that for every packet passing the dead-
line D one cost unit is charged, independently from
whether the deadline is passed by only one time slot
or by a huge amount of time slots. This model is de-
fined by:

αk =

⎧⎪⎨
⎪⎩

0 k < D
1 k = D
0 k > D

(4.17)

4.3 Results

4.3.1 Analyzed sending probabilities

Three possible types of sending probability vec-
tors q now should be examined.

62

4.3. RESULTS

0 10 20 30 40 50 60
0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

delay

co
lli

si
on

 p
ro

ba
bi

lit
y

calc

>102

>103

>104

Figure 4.3. Shows the collision probability sub-

ject to the delay when using the flat model

described in section 4.3.1. The colored dots

show the simulation results, where the or-

ange,blue and green dots are the average of

respectively at least 104,103 and 102 simu-

lation runs. The parameters were N = 20,

q = 0.1, D = 10 and λ = 0.02

Flat

The simplest construction of q is the constant,
therefore independently of the postponement of the
packets to be sent, sending probability:

pk =

{
0 k = −1
q otherwise

(4.18)

REMARK: The value of q−1 is just a matter of
form. Since no packet has to be sent, q−1 is limited
to the value 0. �

Figure 4.3 shows the probability a collision hap-
pens, when a particular user with delay d send a
packet. The longer the delay, the higher the col-
lision probability and the more the calculated re-
sults differ from the simulation result. While the
deviation at a delay of 10 time slots is 4 percent,
this value increases to about 13 percent. But since
the probability that a packet is delayed by a given
amount of time decreases for bigger values, the
growing deviation does not harm.

Peaks

Since the goal in this section is to minimize the de-
lay respecting a deadline D (equations (4.16) and
(4.17)), an obvious behavior of all players would be
sending at the very last minute. In contrast to the
previous, flat model, players at the states k � D
and who have for this reason no costs awarded
against themselfs do not send in order to keep the
traffic low. On the other hand, participants who
are close to pass the deadline do everything in their
power to transmit a packet. That means only one
thing: sending with probability 1. When the last
minute effort didn’t help, the participants tries to
transmit the packet with constant probability q to
stop the delay, and at the same time the costs, grow-
ing (model (4.16)) or only to be credited with a unit
income.

The number of times, a user sends for sure before
the deadline is represented by ψ ∈ R. The frac-
tional part of ψ (denoted by frac(ψ) = ψ − �ψ�)
is interpreted as the sending probability before the
real peaks begin:

pk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 otherwise

frac(ψ) k = D − �ψ�
1 D − �ψ� < k ≤ D
q k > D

(4.19)

Figure 4.4 shows the collision probability P ′
col

for a given delay when q is peak distributed. As
we can see, the collision probability is underesti-
mated by the calculation as long as the delay is
smaller than the deadline D, as soon as the dead-
line is passed, the simulated P ′

col is bigger than the
calculated result. Figure 4.4 shows the collision
probability multiplied by the corresponding send-
ing probability q.

Exponential

In contrast to the previous choice q and instead of
waiting and sending suddenly with probability 1
shortly before the deadline, a more gentle increase

63

4. COST MODELS

0 10 20 30 40 50 60
0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

delay

co
lli

si
on

 p
ro

ba
bi

lit
y

calc

>102

>103

>104

Figure 4.4. Shows the collision probability

when using the peak model from section 4.3.1.

The colored dots show the simulation results,

where the orange,blue and green dots are the

average of respectively at least 104,103 and

102 simulation runs. The parameters are

N = 20, q = 0.1, D = 10 and λ = 0.02

is chosen in this model:

pk =

⎧⎪⎨
⎪⎩

0 k = −1
α · e−β(D−k) 0 < k ≤ D
q k > D

(4.20)

Figure 4.5 shows the collision probability when
α = 1 and β = 1 and figure 4.6 shows the results
when multiplying the values from figure 4.5 by the
corresponding sending probability.

Figure 4.7 shows exemplary sending probabili-
ties for the flat, exponential and peak model.

4.3.2 Evaluation

In this section we evaluate the models derived in
the previous section. We plot the costs according
to the two models (4.16) and (4.17) and compare
them with the income. For each sending probabil-
ity we plot an exemplary weighting γ of the income
and the result. Since this weighting is arbitrary, we
also calculate the bounds where the best result lies
when considering every possible value γ in equa-
tion (4.15).

0 10 20 30 40 50 60

0.4

0.45

0.5

0.55

0.6

delay

co
lli

si
on

 p
ro

ba
bi

lit
y

calc

>102

>103

>104

Figure 4.5. Shows the collision probability

when using the exponential model from sec-

tion 4.3.1. The colored dots show the simula-

tion results, where the orange,blue and green

dots are the average of respectively at least

104,103 and 102 simulation runs. The pa-

rameters areN = 20,β = α = 1, D = 10
and λ = 0.02

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

delay

w
ei

gh
te

d
P

co
l

calc

>102

>103

>104

Figure 4.6. When multiplying the collision prob-

abilities from figure 4.5 with the corresponding

sending probability the values shown in this

figure result.

64

4.3. RESULTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

delay

se
nd

in
g

pr
ob

ab
ili

ty

exp

flat

peak

Figure 4.7. Three exemplary sending probabil-

ity distributions when using the flat, the expo-

nential and the peak model respectively. The

deadline is D is equal to 10.

Flat model

First cost model Figure 4.8 shows the cost, in-
come and gain (net result) when γ = 100. As
you can see, the best result is reached for q ∈
[0.17, 0.18].

Second cost model When we use the cost model
(4.17) instead of (4.16), the set of optimal values q
is increased and now ranges from 0 to 0.22.

Delay Finally we consider the bounds, such that
95%, 99% and 99.9% respectively of the delays that
appear are smaller. For example, the 99%-bound at
q = 0.14 is equal to 64. This means, in 99% percent
of all cases a packet is delayed by at most 64 time
slots.

The gray lines show the best q in terms of the
bounds 95%, 99% and 99.9% respectivey. As you
can see, these optima are between q = 0.13 and
q = 0.17.

Peak model

First cost model The cost according to the model
(4.16), the income using γ = 20 and the net re-

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

sending probability

un
it

costs

income

net result

bounds

Figure 4.8. Shows the costs, the income

(=throughput multiplied by 100) and the re-

sult (costs-income) when considering the costs

model (4.16). The two gray broken lines show

the bounds explained on page 64.

0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10
x 10

−3

sending probability

un
it

costs
income
net result
bounds

Figure 4.9. Shows the costs, income and net

result when using the same parameters as in

figure 4.8 and only changing the cost model to

(4.17). In contrast to figure 4.8, the set of opti-

mal values is bigger and ranges from 0 to 0.22.

65

4. COST MODELS

0 0.1 0.2 0.3 0.4 0.5
10

1

10
2

10
3

10
4

sending probability

un
it

99.9%
99%
95%
optima

Figure 4.10. Shows the bounds, such that 95%,

99% and 99.9% respectively of the delays are

smaller. The smaller the bound the better - the

minima are marked by gray dashed lines.

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

number of peaks ψ

un
it

costs

income

net result

bounds

Figure 4.11. Shows the cost according to the

model 4.16, the income using γ = 20 and the

net result. The parameter q was set to 0.2. The

best choice of ψ lies between 0.85 and 0.9 as

the dashed gray lines indicate.

0 0.5 1 1.5 2

0

2

4

6

8

10
x 10

−3

number of peaks ψ

un
it

costs

income

net result

bounds

Figure 4.12. Costs according to model 4.17, in-

come using γ = 20 and the net result for the

peak model.

sult for a peak model is shown in figure 4.11. The
parameter q was set to 0.2. As you can see, the
optimal choice ψ lies between 0.85 and 0.9. That
means, only one peak should be used.

Second cost model Changing the cost model
(4.17) to (4.16) gives the results plotted in figure
4.12. This time, the optimal ψ ranges from 0 (no
peak at all) to 1.1 (one "‘complete"’ peak plus an-
other small peak of height 0.1).

Delay As for the flat case (figure 4.10) we con-
sider the 95%-, 99%- and 99.9%-bounds respec-
tively. As you can see, the optimal values marked
by dashed gray lines lie between ψ = 0.7 and
ψ = 0.85.

Exponential model

Since the exponential model uses two parameters α
and β besides the probability q, we only modified β
and setting α according to:

α =
1− e−β·D

1− e−β
(4.21)

66

4.3. RESULTS

0 0.5 1 1.5 2
10

1

10
2

10
3

number of peaks ψ

un
it

99.9%
99%
95%
optima

Figure 4.13. The 95%-, 99%- and 99.9%-delay-

bounds. As you can see, the optimal val-

ues (marked by dashed gray lines) lie between

ψ = 0.7 and ψ = 0.85.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

parameter beta

un
it

costs

income

net result

bounds

Figure 4.14. Shows the costs, the income

(=throughput multiplied by 20) and the result

(=costs-income) when considering the cost

model (4.16). The two gray broken lines show

the bounds explained on page 64.

0 1 2 3 4 5

0

2

4

6

8

10
x 10

−3

parameter beta

un
it

costs

income

net result

bounds

Figure 4.15. Shows the costs, income and net

result when using the same parameters as in

figure 4.14 and only changing the cost model

to (4.17). The bigger β, the smaller the costs

but at the same time the smaller the income.

First cost model Figure 4.16 shows the cost ac-
cording to the model (4.16), the income using γ =
20 and the net result for various exponential models.
The parameter q was set to 0.2. The costs and the
income (and therefore the net result) nearly remain
at the same level. The range of optimal parameters
β covers the whole spectrum 0 to 4.9.

Second cost model When using cost model
(4.17) instead of (4.16) we get the results plotted in
figure 4.15. As for the first model (figure 4.14), the
values don’t change much. The costs slightly de-
crease for bigger values of β as well as the through-
put. The optimal β ranges from 0.5 to 4.9.

Delay When looking at the 95%-, 99%- and
99.9%-bounds respectively we get the same diffuse
results as for the cost models (figure 4.14 and 4.15
respectively). The optima are randomly distributed
due to the noise of the simulation results.

4.3.3 Summary

The figures 4.17 and 4.18 show the cumulative
distribution of the delay, using the flat, the expo-

67

4. COST MODELS

0 1 2 3 4 5
10

1

10
2

10
3

parameter beta

sl
ot

s

99.9%

99%

95%

optima

Figure 4.16. Shows the bounds, such that in

95%, 99% and 99.9% respectively of all cases

the delay are of smaller value. Therefore

smaller the bound the better. The minima are

marked by gray dashed lines.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

delay

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

exp

flat

peak

Figure 4.17. Shows the cumulative distribution

of the delay for the three models flat, exponen-

tial and peak when they use the parameters ob-

tained in section 4.3.2. As you can see, the

course of the flat model increases the fastest

in the beginning, but the exponential and the

peak model catch up with the flat model and

outperform it.

50 100 150 200
0.9

0.92

0.94

0.96

0.98

1

delay

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

exp
flat
peak

Figure 4.18. Shows the same cumulative distri-

bution as in figure 4.17 for later time instances.

As you can see, the peak model beats the ex-

ponential model, who for its part beats the flat

sending probability distribution.

nential and the peak model with the parameters ob-
tained in section 4.3.2. As you can see, after 10 time
slots, the flat and the exponential model both have
the same cumulated probability, while the peak can-
not catch up with the big jump at the time instance
10. Around the time slot number 18, the peak dis-
tribution gains the lead in terms of cumulative prob-
ability and beats the exponential model, who for his
part beats the flat model (see figure 4.18).

First cost model Figure 4.19 shows the costs ac-
cording to equation (4.16) on page 62 where the
best choices of the flat, peak and exponential distri-
bution of q are used. The income is weighted by the
factor 20. As you can see, the flat model performs
worst in terms of throughput (and therefore income)
as well as costs - the costs using the exponential
or peak distribution are considerably smaller. The
peak model beats the exponential model in terms of
costs and provides the best result despite the slightly
lower income.

Second cost model When we consider the second
cost model explained in equation (4.17) on page

68

4.3. RESULTS

costs 20*income result

0

0.05

0.1

0.15

un
it

flat

peak

exp

Figure 4.19. Shows the costs according to the

model (4.16) on page 62. The results are deter-

mined by averaging a hundred simulation runs.

The flat model uses p = 0.21, the peak model

ψ = 0.9, p = 0.2 and the exponential model

α = 0.5, β = 0.3, p = 0.2. The income

is scaled by a factor of 20, and the result is

the calculated as follows: result = 20·income-

costs.

costs income results
0

2

4

6

8

x 10
−3

un
it

flat

peak

exp

Figure 4.20. Shows the result when using the

same parameters as in figure 4.19 and only

changing the cost model to equation 4.17 on

page 62. The result represents the difference

between the income and the costs.

95% 99% 99.9%
0

100

200

300

400

500

600

D
el

ay

flat

peak

exp

Figure 4.21. 95%, 99% and 99.9% respectively

of the delay that appear are smaller than the

bounds shown in this figure when using the

same sending distributions as in figure 4.19.

62, the income stay the same since the cost model
does not affect the throughput. The costs, however,
are now maximal for the peak model. The smallest
costs are reached by the flat model which gives also
the best result, even though he only just wins with
a result of 2.803 · 10−3 chased by the exponential
model who provides 2.798 · 10−3.

Delay In figure 4.21 we consider the delay bound,
such that 95%, 99% and 99.9% of the cases have a
smaller delay. As you can see, the peak model beats
the exponential model, who for his part beats the flat
sending probability distribution.

69

4. COST MODELS

70

Conclusions and Summary

In the first chapter (1.2.3) we derived a model
to approximate the characteristics of the ALOHA-
protocol - such as delay and throughput - when all
participants use buffers to store packets incoming at
a given rate λ. In contrast to most examples in the
literature (for example [vM06]) the model is able
to cope with every choice B of buffer space avail-
able and is not restricted to the case B = 1. It was
shown that the rather complex calculations involv-
ing a time dependent Markov chain can be reduced
to the much simpler model all users sending with
a probability determined only by the arrival rate of
the packets.

In section 1.4 the optimal sending probability of
unfair players among fair players was shown and
in section 1.4.2 we gave bounds for these proba-
bilities that guarantee the unfair users are not de-
tected to a certain degree. As we have seen, the op-
timal behavior of unfair users does neither depend
on the number nor the sending probability of the
fair competitors but only on the number of unfair
players. Since we excluded communication among
unfair users to reach an agreement about their num-
ber, we showed how this quantity can be estimated
counting the number of collisions (section 1.5).

As a second possibility to reach the optimal send-
ing probability of unfair players we examined an
adaptive version of ALOHA (chapter 2). But all
configurations we considered turned out to result ei-
ther in cannibalism (section 2) or a blocking condi-
tion (section 2.3.3).

In chapter 3 we introduced two methods to im-
prove the throughput of the conventional ALOHA
protocol simply by choosing the sending proba-
bility dependend on the delay of the packet to be
transmitted. The approximation of the course of
the characteristics - throughput and delay - of both

protocols needed complex calculations involving
Markov chains, but turned out to be very accurate
as shown in section 3.3.2 and 3.3.3 respectively.
The two protocols are able to increase the through-
put (and decrease the delay) heavily considering
long term behavior compared to the conventional
ALOHA-protocol (sections 3.3.1 and 3.3.4). A cru-
cial parameter of the two protocols turned out to be
the period-length P , as explored in detail in section
3.4. Since both protocols don’t need a setup phase
or agreements among players they can be employed
by unfair users and enhance their throughput con-
siderably (section 3.5).

In the last chapter 4 we showed the impact of var-
ious cost models and derived the best sending prob-
abilities strategies when focusing on three promis-
ing possibilities.

71

4. COST MODELS

72

Bibliography

[Bor99] Jürgen Bortz. Statistik für Sozialwis-
senschaftler. Springer, 5th edition, 1999.

[GS03] Charles M. Grinstead and J. Laurie
Snell. Introduction to probability, chapter
Markov Chains, page 405 to 470. Amer-
ican Mathematical Society, 2nd edition,
2003.

[Mey00] Carl D. Meyer. Matrix Analysis and Ap-
plied Linear Algebra. Society for Indus-
trial & Applied Mathematics, 2000.

[Osb04] Martin J. Osborne. An Introduction to
Game Theory. Oxford University Press,
2004.

[Pap01] Lothar Papula. volume 1. vieweg, 10th
edition, 2001.

[Pou99] Alexander D. Poularikas. The Handbook
of Formulas and Tables for Signal Pro-
cessing, chapter Probability and Stochas-
tic Processes. CRC Press, 1999.

[Pro01] John G. Proakis. Digital Communica-
tions. McGraw-Hill, New York, NY,
USA, 4th international edition, 2001.

[Tan03] Andrew S. Tanenbaum. Computer Net-
works. Pearson Education International,
5th international edition, 2003.

[vM06] Piet van Mieghem. Performance Analy-
sis of Communications Networks and Sys-
tems. Cambridge University Press, 2006.

73

	Titelseite.pdf
	main.pdf

