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Abstract—What is the maximal number of nonoverlapping
triangles realizable by n straight lines in a plane? This problem
stated by Fujimura Kobon is an unsolved problem in combi-
natorial geometry. Saburo Tamura proved that |n(n — 2)/3]
provides an upper bound on the maximal number. In this paper
we present the concept of perfect configuration of lines which
are then used to proof that the bound known of Tamura can not
be reached for all n with n = 0 mod 6 and n = 2 mod 6.

In other words a new tighter bound is introduced here which
is equal to: n(n — 2)/3 when n mod 6 € {3,5}, (n +
1)(n — 3)/3 when n mod 6 € {0,2}, (n — 1)?/3 when n
mod 6 € {1,4}.

Index Terms—Kobon triangles, upper bound, combinatorial
geometry, math puzzle

I. INTRODUCTION

A Kobon triangle is a triangle that is realized by 3 straight
lines segments and which does not overlap with other triangles.
What is the largest number K (n) of such triangles constructed
by drawing n lines in the plane (we hereafter call an arrange-
ment of n straight lines configuration)? Kobon Fujimura, a
Japanese puzzle expert and math teacher, posed in 1978 this
question in his book “The Tokyo Puzzle” [2], [3]. For up to
six lines it’s easy to find K (n) and the corresponding optimal
configurations. However, despite the problem is easy to state,
an analytic expression for K (n) is still unknown and believed
to be hard to find [4].

Table I shows the number of Kobon triangles realized by
the best known configurations of up to n lines. The numbers
are listed the On-Line Encyclopedia of Integer Sequences as
A006066 [1]. Of course every configuration that reaches the
upper bound is optimal. In the following we consider only the
non degenerated cases of n > 3.

Although a analytic expression for the number of triangles
is unknown, Saburo Tamura has proved that

ey
is an upper bound on K (n). The proof of Saburo Tamura
directly follows from the proof of Lemma 1. The resulting
series is registered as A032765 [1]. The first terms can be
seen in Table I as well as the configuration that reach the
bound (bold). The largest configuration was recently found by
one of the author and consists of 17 lines (see Figure 1).
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Figure 1.  This configuration of 17 lines generates 85 nonoverlapping
triangles. According to (1) the solution is optimal.

Most of the known configurations come very close to the
upper bound, however, it’s noticeable that no configurations
with n» = 4 mod 6 apart from n = 4 is known that reaches
the upper bound.

To find a tighter proof, we build up on the following
proposition:

Proposition 1. Let’s call the intersection of two or more lines
point and a part of a line that is bounded by two points
segment. Given a configuration of n lines, the maximal number
of points is n(n — 1)/2 and the maximal number of segments
is equal to n(n — 2).

Proof: If all straight lines are pairwise intersecting and
three different lines don’t intersect a same common point then
every line intersects the remaining n — 1 lines once which
divides the line into n — 2 segments. The total number of line
segments sums up to n(n — 2) and the number of intersection
points to n(n —1)/2. O

II. MAIN PROOF

Definition 1. A perfect configuration is an arrangement of
n pairwise intersecting lines, where each segment is the side



[n [[3[4[5[6[7[8 [9[10[11[12[13[14[15[16[17[18[19[20]
(n mod 6) 3141510 1 2 3 4 5 0 1 2 3 4 5 0 1 2
K(n) 1|2 (5| 7% |11 | 15% | 21 | 25 | 32 | 38 | 47 | 53 | 65| 72 | 8 | 93 | 104 | 115
Bound of Tamura 11258 11 | 16 21 | 26 | 33 | 40 | 47 | 56 | 65 | 74 | 85 | 96 | 107 | 120
Authors’ bound 11257 11 | 15 21 | 26 | 33 |39 |47 |55 165 | 74| 8 |95 | 107 | 119

Table T

THE NUMBER OF NONOVERLAPPING TRIANGLES K(n) THAT THE BEST KNOWN CONFIGURATIONS OF 1 STRAIGHT LINES REALIZES. THE BOLD
NUMBERS REACH THE BOUND OF TAMURA, THE STARS INDICATE THE CONFIGURATION WHICH REACH THE TIGHTER BOUND (2) AND THEREFORE ARE
MAXIMAL AS WELL.
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Figure 2. Two pairs of triangles share one common side each and a common
point which is the intersection of (at least) three lines.
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Figure 3. The number of line segments and points decreases by 3 and 2
respectively if a line intersects an existing point.

of exactly one nonoverlapping triangle and K (n) meets the
upper bound (1).

Lemma 1. If (n mod 3) € {0,2}, then all configurations
that meet the upper bound (1) are perfect configurations. In
these cases n(n —2) =0 mod 3 hence K(n) =n(n—2)/3.

Proof: We have to show that no configuration with
common side triangles and (n mod 3) € {0,2} exists with
K(n) = % This is equal to show that the number of line
segments needed is larger than 3K (n). We proof the claim that
a triangle needs three line segments if they don’t side another
triangle and more in all other cases. By looking at Figure 2

W€ S€€:

1) A line segment can be the side of one or two triangles.

2) If a line segment is the side of two triangles then the
corresponding line intersects at one of the two endpoints
an existing point which belongs to both triangles.

3) From 2. follows that every intersection point with more

than two corresponding lines is part of at most two pairs

of triangles that share a common side.
By looking at Figure 3 we see that if a line intersects an
existing point then the number of points decreases by 2 and
the number of segments by 3. Hence we ”save” at most two
segments (the common ones) but we loose three due to the
intersection of more than two lines in one point. Hence the
number of line segments needed to build triangles increases if
one side belongs to two triangles. Clearly, if a side does not
belong to any triangle the number increases as well. Therefore
the number of line segments needed is minimized if each line
segment belongs to exactly one triangle and cannot be reached
in all other cases. O

Definition 2. The first and the last point on a line are called
extremal point. The degree of a point is the number of segments
which are connected to such a point.

Lemma 2. In a perfect configuration all extremal points have
degree 2.

Proof: In a perfect configuration not more than two lines
intersect in the same point because otherwise the number
of line segments would decrease according to the Proof to
Lemma 1 and the upper bound could not be reached. There
are only three possible degrees for any point P in a figure: 2,
3 or 4 because:

o Degrees smaller than 2 are not possible as on both lines
of P there are n(n — 1) > 2 points and therefore at least

two line segments attached to P.
o Degrees bigger than 4 are not possible as on each of the
two lines there can be at most one segment on the left of

P and one segment on the right.
If a point P is of degree 4 then both corresponding lines have
two points on the left and the right of P and P is an extremal
point of neither of them. Degrees of 3 are as well not possible
because then the configuration cannot be perfect as can be seen
from Figure 4: If the configuration is perfect then BP and PC
must be siding a triangle as per Definition 1. Hence ABP and
ACP must be triangles. Then AP is siding two triangles which
contradicts Definition 1. O

Lemma 3. A perfect configuration exists only for odd n.

Proof: Lets consider one line L of the perfect configura-
tion (see Figure 5). As per Proposition 1 the line is divided
in n — 2 line segments. Each of this segments belongs to
exactly one triangle as per Definition 1. Starting with the



Figure 4. No extremal point P in a perfect configuration is of degree 3.
If the figure is maximal then BP and PC must be siding a triangle as per
Definition 1. Hence ABP and ACP must be triangles. Then AP is siding two
triangles which is contradicting Definition 1.

Figure 5. The line L consists of n — 2 segments which side triangles that
lie alternately above and below L. Since E; and E, intersect in a point on
one of the two dotted rays for n = 0 mod 2, one of the extremal points of
L has degree 3 which contradicts Lemma 2

leftmost segment we assume without loss of generality that the
corresponding triangle lies above of L (triangle 1). By looking
at Figure 4 we see that the second triangle needs to be below
L - otherwise the first and the second triangle would have a
common side - and so on. If n is odd then the last triangle
lies below L.

Now lets have a look at the two lines F; and FE, that
intersect the two extremal points of L. Since in a perfect
configuration no lines are parallel, F; and Es intersect either
above or below L. This entails a point on the dotted ray of
either F; or F.. But this in turn means that the corresponding
extremal point on L is of degree 3 which contradicts Lemma

2. |

Theorem 1. The maximal number of Kobon triangles K (n)

for a given number of n straight lines in a plane is upper
bounded by

K(n) < {"("2)

3 J =L mod 6)ef0,2}3(n)  (2)

where 14(x) denotes the indicator function. In other words
the upper bound known by Saburo Tamura cannot be reached
for all n with n =0 mod 6 and n =2 mod 6.

Proof: According to Lemma 1 the upper bound can only
be reached by perfect configurations if n = 0 mod 3 or
n = 2 mod 3. But these perfect configurations are only
possible for odd n according to Lemma 3. Therefore for n

mod 3 € {0,2} and n = 0 mod 2 the upper bound cannot
be reached. These two conditions can be summarized as n

mod 6 € {0,2}.
In other words the upper bound is
n(n—2)/3 n mod 6 € {3,5}
B(n)=<n(n—-2)/3—1 n mod 6 € {0,2}  (3)
(n—1)%/3 n mod 6 € {1,4}
[l

The last row of Table I shows the new bound. The stars in
the third line indicate the configurations that are optimal in
addition to the already known optimal solutions (bold).
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