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Abstract—In the field of evolutionary multi-criterion optimiza-
tion, the hypervolume indicator is the only single set quality
measure that is known to be strictly monotonic with regard to
Pareto dominance: whenever a Pareto set approximation entirely
dominates another one, then also the indicator value of the former
will be better. This property is of high interest and relevance
for problems involving a large number of objective functions.
However, the high computational effort required for hypervolume
calculation has so far prevented to fully exploit the potential of
this indicator; current hypervolume-based search algorithms are
limited to problems with only a few objectives.

This paper addresses this issue and proposes a fast search
algorithm that uses Monte Carlo simulation to approximate the
exact hypervolume values. The main idea is that not the actual
indicator values are important, but rather the rankings of solu-
tions induced by the hypervolume indicator. In detail, we present
HypE, a hypervolume estimation algorithm for multiobjective
optimization, by which the accuracy of the estimates and the
available computing resources can be traded off; thereby, not
only many-objective problems become feasible with hypervolume-
based search, but also the runtime can be flexibly adapted.
Moreover, we show how the same principle can be used to
statistically compare the outcomes of different multiobjective
optimizers with respect to the hypervolume—so far, statistical
testing has been restricted to scenarios with few objectives. The
experimental results indicate that HypE is highly effective for
many-objective problems in comparison to existing multiobjective
evolutionary algorithms.

HypE is available for download at http://www.tik.ee.ethz.ch/
sop/download/supplementary/hype/.

I. MOTIVATION

By far most studies in the field of evolutionary multiobjec-
tive optimization (EMO) are concerned with the following set
problem: find a set of solutions that as a whole represents a
good approximation of the Pareto-optimal set. To this end, the
original multiobjective problem consisting of

« the decision space X,

» the objective space Z = R",

o a vector function f = (f1, f2,...,fn) cOmMprising n
objective functions f; : X — R, which are without loss
of generality to be minimized, and

« a relation < on Z, which induces a preference relation
=<on X witha <b:& f(a) < f(b) for a,b € X,

is usually transformed into a single-objective set problem [45].
The search space W of the resulting set problem includes
all possible Pareto set approximations?!, i.e., ¥ contains all
multisets over X. The preference relation < can be used to
define a corresponding set preference relation < on ¥ where

A<B:=VYeBlacA: a=<b 1)

for all Pareto set approximations A, B € W. In the following,
we will assume that weak Pareto dominance is the underlying
preference relation, cf. [45].2

A key question when tackling such a set problem is how
to define the optimization criterion. Many multiobjective evo-
lutionary algorithms (MOEAS) implement a combination of
Pareto dominance on sets and a diversity measure based on
Euclidean distance in the objective space, e.g., NSGA-II [12]
and SPEA2 [41]. While these methods have been successfully
employed in various biobjective optimization scenarios, they
appear to have difficulties when the number of objectives
increases [33]. As a consequence, researchers have tried to
develop alternative concepts, and a recent trend is to use
set quality measures, also denoted as quality indicators, for
search—so far, they have mainly been used for performance
assessment. Of particular interest in this context is the hy-
pervolume indicator [42], [44] as it is the only quality in-
dicator known to be fully sensitive to Pareto dominance—a
property especially desirable when many objective functions
are involved.

Several hypervolume-based MOEAs have been proposed
meanwhile, e.g., [14], [22], [9], but their main drawback is
their extreme computational overhead. Although there have
been recent studies presenting improved algorithms for hy-
pervolume calculation, currently high-dimensional problems
with six or more objectives are infeasible for these MOEAs.
Therefore, the question is whether and how fast hypervolume-
based search algorithms can be designed that exploit the

IHere, a Pareto set approximation may also contain dominated solutions as
well as duplicates, in contrast to the notation in [46].

2For reasons of simplicity, we will use the term ‘u weakly dominates v’
resp. ‘u dominates v’ independently of whether w and v are elements of X,
Z, or W. For instance, A weakly dominates b with A € ¥ and b € X means
A < {b} and a dominates z with e € X and z € Z means f(a) < z A z £
f(a).



advantages of the hypervolume indicator and at the same time
are scalable with respect to the number of objectives.

A first attempt in this direction has been presented in [1].
The main idea is to estimate—by means of Monte Carlo
simulation—the ranking of the individuals that is induced by
the hypervolume indicator and not to determine the exact indi-
cator values. This paper proposes an advanced method called
HypE (Hypervolume Estimation Algorithm for Multiobjective
Optimization) that is based on the same idea, but uses more
effective fitness assignment and sampling strategies. In detail,
the main contributions of this work can be summarized as
follows:

1) A novel method to assign fitness values to individuals
based on the hypervolume indicator—for both mating
and environmental selection;

2) A hypervolume-based search algorithm (HypE) using
Monte Carlo simulation that can be applied to problems
with arbitrarily many objectives;

3) A statistical testing procedure that allows to compare
the outcomes of different multiobjective optimizers with
respect to the hypervolume indicator in many-objective
scenarios.

As we will show in the follwing, the proposed search algo-
rithm can be easily tuned regarding the available computing
resources and the number of objectives involved. Thereby,
it opens a new perspective on how to treat many-objective
problems, and the presented concepts may also be helpful
for other types of quality indicators to be integrated in the
optimization process.

Il. A BRIEF REVIEW OF HYPERVOLUME-RELATED
RESEARCH

The hypervolume indicator was originally proposed and
employed in [43], [44] to quantitatively compare the outcomes
of different MOEAs. In these two first publications, the
indicator was denoted as ‘size of the space covered’, and later
also other terms such as ‘hyperarea metric’ [32], ‘S-metric’
[37], “hypervolume indicator’ [46], and hypervolume measure
[4] were used. Besides the names, there are also different
definitions available, based on polytopes [44], the Lebesgue
measure [26], [25], [17], or the attainment function [39].

As to hypervolume calculation, the first algorithms [38],
[25] operated recursively and in each recursion step the num-
ber of objectives was decremented; the underlying principle is
known as ‘hypervolume by slicing objectives’ approach [35].
While the method used in [43], [44] was never published
(only the source code is publicly available [38]), Knowles
independently proposed and described a similar method in
[25]. A few years later, this approach was the first time studied
systematically and heuristics to accelerate the computation
were proposed in [35]. All these algorithms have a worst-
case runtime complexity that is exponential in the number of
objecives, more specifically O(N"~1) where N is the number
of solutions considered [25], [35]. A different approach was
presented by Fleischer [17] who mistakenly claimed a polyno-
mial worst-case runtime complexity—While [34] showed that

it is exponential in n as well. Recently, advanced algorithms
for hypervolume calculation have been proposed, a dimension-
sweep method [18] with a worst-case runtime complexity of
O(N"2log N), and a specialized algorithm related to the
Klee measure problem [5] the runtime of which is in the
worst case of order O(N log N + N™/2). Furthermore, Yang
and Ding [36] described an algorithm for which they claim a
worst-case runtime complexity of O((n/2)Y). The fact that
there is no exact polynomial algorithm available gave rise
to the hypothesis that this problem in general is hard to
solve, although the tighest known lower bound is of order
Q(Nlog N) [3]. New results substantiate this hypothesis:
Bringmann and Friedrich [8] have proven that the problem
of computing the hypervolume is #P-complete, i.e., it is
expected that no polynomial algorithm exists since this would
imply NP = P.

The complexity of the hypervolume calculation in terms
of programming and computation time may explain why this
measure was seldom used until 2003. However, this changed
with the advent of theoretical studies that provided evidence
for a unique property of this indicator [23], [46], [17]: it is the
only indicator known to be strictly monotonic with respect to
Pareto dominance and thereby guaranteeing that the Pareto-
optimal front achieves the maximum hypervolume possible,
while any worse set will be assigned a worse indicator value.
This property is especially desirable with many-objective
problems and since classical MOEASs have been shown to have
difficulties in such scenarios [33], a trend can be observed
in the literature to directly use the hypervolume indicator for
search.

Knowles and Corne [25], [24] were the first to propose the
integration of the hypervolume indicator into the optimization
process. In particular, they described a strategy to maintain
a separate, bounded archive of nondominated solutions based
on the hypervolume indicator. Huband et al. [21] presented
an MOEA which includes a modified SPEA2 environmental
selection procedure where a hypervolume-related measure
replaces the original density estimation technique. In [40],
the binary hypervolume indicator was used to compare in-
dividuals and to assign corresponding fitness values within a
general indicator-based evolutionary algorithm (IBEA). The
first MOEA tailored specifically to the hypervolume indicator
was described in [14]; it combines nondominated sorting with
the hypervolume indicator and considers one offspring per
generation (steady state). Similar fitness assignment strategies
were later adopted in [39], [22], and also other search al-
gorithms were proposed where the hypervolume indicator is
partially used for search guidance [28], [27]. Moreover, spe-
cific aspects like hypervolume-based environmental selection
[7], cf. Section 11I-B, and explicit gradient determination for
hypervolume landscapes [15] have been investigated recently.

To date, the hypervolume indicator is one of the most
popular set quality measures. For instance, almost one fourth
of the papers published in the proceedings of the EMO 2007
conference [29] report on the use of or are dedicated to the
hypervolume indicator. However, there are still two major
drawbacks that current research acitivities try to tackle: (i)



the high computation effort and (ii) the bias of the indicator in
terms of user preferences. The former issue has been addressed
in different ways: by automatically reducing the number of
objectives [9] and by approximating the indicator values using
Monte Carlo methods [16], [1]. Everson et al. [16] used a basic
Monte Carlo technique for performance assessment in order
to estimate the values of the binary hypervolume indicator
[37]; with their approach the error ratio is not polynomially
bounded. In contrast, the scheme presented in [8] is a fully
polynomial randomized approximation scheme where the error
ratio is polynomial in the input size. The issue of statistically
comparing hypervolume estimates was not addressed in these
two papers. Another study [1]—a precursor study for the
present paper—employed Monte Carlo simulation for fast
hypervolume-based search. As to the bias issue, first proof-of-
principle results have been presented in [39] that demonstrate
that and how the hypervolume indicator can be adapted to
different user preferences.

I11. HYPERVOLUME-BASED FITNESS ASSIGNMENT

When considering the hypervolume indicator as the objec-
tive function of the underlying set problem, the main question
is how to make use of this measure within a multiobjective
optimizer to guide the search. In the context of an MOEA,
this refers to selection and one can distinguish two situations:

1) The selection of solutions to be varied (mating selec-
tion).

2) The selection of solutions to be kept in memory (envi-
ronmental selection).

Since the indicator as such operates on (multi)sets of solu-
tions, while selection considers single solutions, a strategy
for assigning fitness values to solutions is required. Most
hypervolume-based algorithms first perform a nondominated
sorting and then rank solutions within a particular front accord-
ing to the hypervolume loss that results from the removal of
a specific solution [24], [14], [22], [1]. In the following, we
propose a generalized fitness assignment strategy that takes
into account the entire objective space weakly dominated by
a population. We will first provide a basic scheme for mating
selection and then present an extension for environmental
selection. Afterwards, we briefly discuss how the fitness values
can be computed exactly using a slightly modified hypervol-
ume calculation algorithm.

A. Basic Scheme for Mating Selection

To begin with, we formally define the hypervolume indicator
as a basis for the following discussions. Different definitions
can be found in the literature, and we here use the one from
[45] which draws upon the Lebesgue measure as proposed in
[26] and considers a reference set of objective vectors.

Definition 111.1. Let A € ¥ be a Pareto set approximation
and R C Z be a reference set of mutually nondominating
objective vectors. Then the hypervolume indicator Iy can be
defined as

In(A, R) == NH(A,R)) (2

where
H(A,R):={z€Z;3ac AIJreR: f(a) <z<r} (3)

and X\ is the Lebesgue measure with A(H(A,R)) =
Jan Lr(A,R)(2)dz and 14 gy being the characteristic func-
tion of H(A, R).

The set H(A, R) denotes the set of objective vectors that are
enclosed by the front f(A) given by A and the reference set
R.

The subspace H(A,R) of Z can be further split into
partitions H (S, A, R), each associated with a specific subset

S CA:
H(S,A,R):=[(VH{s}, RI\[
sesS acA\S

Theset H(S, A, R) C Z represents the portion of the objective
space that is jointly weakly dominated by the solutions in S
and not weakly dominated by any other solution in A. It holds

H({a}, R)]  (4)

|JH(S.AR) =

SCA
which is illustrated in Fig. 1(a). That the partitions are disjoint
can be easily shown: Assume that there are two non-identical
subsets Sy, So of A for which H (S, A, R)NH (S2, A, R) # 0;
since the sets are not identical, there exists with loss of gener-
ality an element a € S; which is not contained in S; from the
above definition follows that H({a}, R) 2 H(S1, A, R) and
therefore H({a}, R) N H(S2, A, R) # 0; the latter statement
leads to a contradiction since H({a}, R) cannot be part of
H(S2, A, R) when a & Ss.

In practice, it is infeasible to determine all distinct
H(S, A, R) due to combinatorial explosion. Instead, we will
consider a more compact splitting of the dominated objective
space that refers to single solutions:

H(A, R) (®)

Hi(a,A,R):= | ) H(S, A R) (6)
SCA
acs
|S]=i
According to this definition, H;(a, A, R) stands for

the portion of the objective space that is jointly and
solely weakly dominated by « and any ¢ — 1 further
solutions from A, see Fig. 1(b). Note that the sets
Hy(a,A,R),Hs(a, A, R), ..., Hu(a, A R) are disjoint for
agivena € A, ie, U1<z<\A\H (a,A,R) = H({a}, R), while
the sets H;(a, A, R) and H;(b, A, R) may be overlappmg for
fixed 7 and different solutions a, b € A. This slightly different
notion has reduced the number of subspaces to be considered
from 214! for H(S, A, R) to |A|? for H;(a, A, R).

Now, given an arbitrary population P € WU one
obtains for each solution « contained in P a vector
(A(Hi(a, P, R)), \(Ha(a, P, R)), ..., \(H|p|(a, P, R))) of
hypervolume contributions. These vectors can be used to
assign fitness values to solutions; Subsection 111-C describes
how the corresponding values \(H;(a, A, R)) can be
computed. While most hypervolume-based search algorithms
only take the first components, i.e., A(Hi(a, P, R)), into
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Figure 2. Illustration of the basic fitness assignment scheme where the fitness
F, of a solution a is set to £, = Iy (a, P, R).

account, we here propose the following scheme to aggregate
the hypervolume contributions into a single scalar value.

Definition 111.2. Let A € ¥ and R C Z. Then the function
1, with
[A]| 1

I A = -XNH;(a, A, 7

w(a. A, R) ;ﬁ<w R)) ()
gives for each solution a« € A the hypervolume that can
be attributed to a with regard to the overall hypervolume
In(A R).

The motivation behind this definition is simple: the hyper-
volume contribution of each partition H(S, A, R) is shared
equally among the dominating solutions s € S. That means the
portion of Z solely weakly dominated by a specific solution
a is fully attributed to «a, the portion of Z that a weakly
dominates together with another solution b is attributed half
to a and so forth—the principle is illustrated in Fig. 2.
Thereby, the overall hypervolume is distributed among the
distinct solutions according to their hypervolume contributions
as the following theorem shows (the proof can be found in
the appendix). Note that this scheme does not require that
the solutions of the considered Pareto set approximation A
are mutually non-dominating; it applies to nondominated and
dominated solutions alike.

H,(c,A,R)= H({a,b,c},AR)
+H({b,c,d}, A R)

> HQ(CaA7R) = H({b,C}7A,R)
+H({c,d}, A, R)
™~ H1(07A7R) = H({(‘}’A7R)

f(©)

f(d)
(b) The relationship between H(S, A, R) and H;(a, A, R)

Illustration of the notions of H (A, R), H(S, A, R), and H;(a, A, R) in the objective space for a Pareto set approximation A = {a, b, ¢,d} and

R={r}
R /
- .50 1 o d e A
f(a) z: I,(a, A R) = const
f®)
f(e)
fd)
Figure 3. Shows for an example population the selection probabilities for

the population members (left). The sizes of the points correlate with the
corresponding selection probabilities. As one can see on the right, the overall
selection probability for the shaded area does not change when dominated
solutions are added to the population.

Theorem 111.3. Let A € ¥ and R C Z. Then it holds
In(A,R) = In(a, A, R) )

acA

This aggregation method has some desirable properties that
make it well suited to mating selection where the fitness F',
of a population member @ € P is F, = I(a, P, R) and the
corresponding selection probability p, equals F,/Ix (P, R).
As Fig. 3 demonstrates, the accumulated selection probability
remains the same for any subspace H({a}, R) with a € P,
independently of how many individuals b € P are mapped
to H({a},R) and how the individuals are located within
H({a}, R). This can be formally stated in the next theorem;
the proof can again be found in the appendix.

Theorem I11.4. Let A€ WV and R C Z. For every a € A and
all multisets By, B € ¥ with {a} < By and {a} < B> holds

D D

b1e{a}UB; boe{a}lUBy

In(b1,{a}UB1, R) = I (b2, {a}UB2, R)

)

Since the selection probability per subspace is constant as
long as the overall hypervolume value does not change, adding
dominated solutions to the population leads to a redistribution
of the selection probabilities and thereby implements a natural



Table |
COMPARISON OF THREE FITNESS ASSIGNMENT SCHEMES: (1) CONSTANT
FITNESS, (2) NONDOMINATED SORTING PLUS A(Hi (a, P, R)), AND (3)
THE PROPOSED METHOD. EACH VALUE GIVES THE PERCENTAGE OF CASES
WHERE THE METHOD ASSOCIATED WITH THAT ROW YIELDS A HIGHER
HYPERVOLUME VALUE THAN THE METHOD ASSOCIATED WITH THE
CORRESPONDING COLUMN.

| versus [| constant (1) | standard (2) | new (3) |

constant (1) 44% 28%

standard (2) 56% 37%

new (3) 2% 63%

niching mechanism. Another advantage of this fitness assign-
ment scheme is that it takes all hypervolume contributions
H;(a, P, R) for 1 <i < |P] into account. As will be discussed
in Section 1V, this allows to more accurately estimate the
ranking of the individuals according to their fitness values
when using Monte Carlo simulation.

In order to study the usefulness of this fitness assignment
strategy, we consider the following experiment. A standard
evolutionary algorithm implementing pure nondominated sort-
ing fitness is applied to a selected test function (biobjective
WFG1 [20] using the setting as described in Section VI) and
run for 100 generations. Then, mating selection is carried out
on the resulting population, i.e., the individuals are reevaluated
using the fitness scheme under consideration and offspring is
generated employing binary tournament selection with replace-
ment and corresponding variation operators. The hypervolume
of the (multi)set of offspring is taken as an indicator for the
effectiveness of the fitness assignment scheme. By compar-
ing the resulting hypervolume values for different strategies
(constant fitness leading to uniform selection, nondominated
sorting plus A(H1(a, P, R)), and the proposed fitness accord-
ing to Def. 111.2) and for 100 repetitions of this experiment, we
can investigate the influence of the fitness assignment strategy
on the mating selection process.

The Quade test, a modification of Friedman’s test which has
more power when comparing few treatments [10], reveals that
there are significant differences in the quality of the generated
offspring populations at a signficance level of 0.01 (test statis-
tics: T3 = 12.2). Performing post-hoc pairwise comparisons
following [10] using the same significance level as in the
Quade test provides evidence that the proposed fitness strategy
can be advantageous over the other two strategies, cf. Table I;
in the considered setting, the hypervolume values achieved
are significantly better. Comparing the standard hypervolume-
based fitness with constant fitness, the former outperforms the
latter significantly. Nevertheless, also the required computation
resources need to be taken into account. That means in practice
that the advantage over uniform selection may diminish when
fitness computation becomes expensive. This aspect will be
investigated in Section VI.

Next, we will extend and generalize the fitness assignment
scheme with regard to the environmental selection phase.

B. Extended Scheme for Environmental Selection

In the context of hypervolume-based multiobjective search,
environmental selection can be formulated in terms of the
hypervolume subset selection problem (HSSP).

Definition 111.5. Let A€ ¥, RC Z,and k € {0,1,...,|A|}.
The hypervolume subset selection problem (HSSP) is defined
as the problem of finding a subset A’ C A with |A'| = |A| -k
such that the overall hypervolume loss is minimum, i.e.,

Iy(A',R) = In(A”,R) (10)

max
A//gA
|A” =] A| -k

Here, we assume that parents and offspring have been
merged into a single population P which then needs to be
truncated by removing & solutions. Since dominated solutions
in the population do not affect the overall hypervolume, they
can be deleted first; therefore, we assume in the following
that all solutions in P are incomparable® or indifferent* to
each other.

If £ = 1, then HSSP can be solved exactly by removing
that solution a from the population P with the lowest value
A(Hi(a, P, R)); this is the principle implemented in most
hypervolume-based MOEASs which consider one offspring per
generation, e.g., [24], [14], [22]. However, it has been recently
shown that exchanging only one solution in the population
like in steady state MOEAs (k = 1) may lead to premature
convergence to a local optimum in the hypervolume landscape
[45]. This problem can be avoided when generating at least as
many offspring as parents are available, i.e., k > |P|/2.

For arbitrary values of k, dynamic programming can be
used to solve HSSP in a biobjective setting; in the presence
of three or more objectives, it is an open problem whether
HSSP becomes NP-hard. In practice, a greedy heuristic is
employed to obtain an approximation [40], [9]: all solutions
are evaluated with respect to their usefulness and the [ least
important solutions are removed where [ is a prespecified
parameter. Most popular are the following two approaches:

1) Iterative (I = 1): The greedy heuristics is applied &
times in a row; each time, the worst solution is removed
and afterwards the remaining solutions are re-evaluated.

2) One shot (I = k): The greedy heuristics is only applied
once; the solutions are evaluated and the k& worst solu-
tions are removed in one step.

Best results are usually obtained using the iterative approach,
as the re-evaluation increases the quality of the generated
approximation. In contrast, the one-shot approach substantially
reduces the computation effort, but the quality of the resulting
subset is lower. In the context of density-based MOEAs, the
first approach is for instance used in SPEA2, while the second
is employed in NSGA-II.

The key issue with respect to the above greedy strategy
is how to evaluate the usefulness of a solution. The scheme

3Two solutions a,b € X are called incomparable if and only if neither
weakly dominates the other one, i.e., a Aband b A a

4Two solutions a, b € X are called indifferent if and only if both weakly
dominate other one, i.e., a <band b <a
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Figure 4. The figure is based on the previous example with A =

{a,b,c,d}, R = {r} and shows (i) which portion of the objective space
remains dominated if any two solutions are removed from A (shaded area),
and (ii) the probabilities p that a particular area that can be attributed to a € A
is lost if a is removed from A together with any other solution in A.

presented in Def. I11.2 has the drawback that portions of
the objective space are taken into account that for sure will
not change. Consider, for instance, a population with four
solutions as shown in Fig. 4; when two solutions need to
be removed (k = 2), then the subspaces H ({a,b,c}, P, R),
H({b,c,d}, P,R), and H({a,b,c,d}, P, R) remain weakly
dominated independently of which solutions are deleted. This
observation led to the idea of considering the expected loss
in hypervolume that can be attributed to a particular solution
when exactly & solutions are removed. In detail, we consider
for each a € P the average hypervolume loss over all subsets
S C P that contain a and k — 1 further solutions; this value
can be easily computed by slightly extending the scheme from
Def. 111.2 as follows.

Definition I11.6. Let A€ ¥, RC Z,and k € {0,1,...,
Then the function I} with

Z > TAR))J (11)

SesS | TCS
acT

whereS = {SC A;ae€ S A |S| =k} contains all subsets of
A that include a and have cardinality % gives for each solution
a € A the expected hypervolume loss that can be attributed
to @ when ¢ and k£ — 1 uniformly randomly chosen solutions
from A are removed from A.

A[}-

If(a, A, R) :=

[S] |T|

Notice that Ij(a,A,R) = A(Hi(a,A,R)) and
1", A R) = In(a, A R), ie., this modified scheme
can be regarded as a generalization of the scheme presented
in Def. 111.2 and the commonly used fitness assignment
strategy for hypervolume-based search [24], [14], [22], [1].
The next theorem shows how to calculate 1} (a, A, R) without
averaging over all subsets S € S; the proof can be found in
the appendix.

Theorem 111.7. Let A€ ¥, RC Z,and k € {0,1,...,
Then it holds

[}

S

Y

Ii(a, A, R) = " " MHi(a, A, R))

(12)

i=1

Table 11
COMPARISON OF GREEDY STRATEGIES FOR THE HSSP (ITERATIVE VS.
ONE SHOT) USING THE NEW (IF) AND THE STANDARD HYPERVOLUME
FITNESS (/}); AS A REFERENCE, PURELY RANDOM DELETIONS ARE
CONSIDERED AS WELL. THE FIRST COLUMN GIVES THE PORTION OF
CASES AN OPTIMAL SUBSET WAS GENERATED; THE SECOND COLUMN
PROVIDES THE AVERAGE DIFFERENCE IN HYPERVOLUME BETWEEN
OPTIMAL AND GENERATED SUBSET. THE LAST TWO COLUMNS REFLECT
THE DIRECT COMPARISONS BETWEEN THE TWO FITNESS SCHEMES FOR
EACH GREEDY APPROACH (ITERATIVE, ONE SHOT) SEPARATELY; THEY
GIVE THE PERCENTAGES OF CASES WHERE THE CORRESPONDING
METHOD WAS BETTER THAN OR EQUAL TO THE OTHER ONE.

greedy strategy optimum found distance better equal
iterative with I’,; 59.8 % 1.0910~3 303% 665%
iterative with 1, 445 % 2591073 317% 665 %
one shot with I}’% 16.9 % 3931073 652% 23.7 %
one shot with I; 34 % 6961073 111% 237 %
uniformly random 0.381 % 257 103
where
i—1 k-
ai =] 1 (13)
oy 1Al =g

Next, we will study the effectiveness of I} (a, A, R) for
approximating the optimal HSSP solution. To this end, we
assume that for the iterative greedy strategy (I = 1) in the first
round the values Ig(a,A,R) are considered, in the second
round the values 7~ '(a, A, R), and so forth; each time an
individual assigned the lowest value is selected for removal.
For the one-step greedy method (I = k), only the I} (a, A, R)
values are considered.

Table Il provides a comparison of the different techniques
for 100, 000 randomly chosen Pareto set approximations A €
¥ containing ten incomparable solutions, where the ten points
are randomly distributed on a three dimensional unit simplex,
i.e., we consider a three objective scenario. The parameter k
was set to 5, so that half of the solutions needed to be removed.
The relatively small numbers were chosen to allow to compute
the optimal subsets by enumeration. Thereby, the maximum
hypervolume values achievable could be determined.

The comparison reveals that the new fitness assignment
scheme is in the considered scenario more effective in approx-
imating HSSP than the standard scheme. The mean relative
distance (see Table II) to the optimal solution is about 60%
smaller than the distance achieved using I} in the iterative case
and about 44% smaller in the one shot case. Furthermore, the
optimum was found much more often in comparison to the
standard fitness: 34% more often for the iterative approach
and 497% in the one shot scenario.

Finally, note that the proposed evaluation function 7 will
be combined with nondominated sorting for environmental
selection, cf. Section V, similarly to [14], [22], [9], [39],
[1]. One reason is computation time: with nondominated
sorting the worst dominated solutions can be removed quickly
without invoking the hypervolume calculation algorithm; this
advantage mainly applies to low-dimensional problems and to
the early stage of the search process. Another reason is that
the full benefits of the scheme proposed in Def. 111.6 can be



exploited when the Pareto set approximation A under consid-
eration only contains incomparable and indifferent solutions;
otherwise, it cannot be guaranteed that nondominated solutions
are preferred over dominated ones.

C. Exact Calculation of I}

In this subsection, we tackle the question of how to calculate
the fitness values for a given population P € . We present
an algorithm that determines the values I} (a, P, R) for all
elements a € P and a fixed k—in the case of mating
selection k equals |P|, in the case of environmental selection
k gives the number of solutions to be removed from P. It
operates according to the “hypervolume by slicing objectives’
principle [38], [25], [35], but differs from existing methods
in that it allows (i) to consider a set R of reference points
and (i) to compute all fitness values, e.g., the I} (a, P, R)
values for £ = 1, in parallel for any number of objectives
instead of subsequently as in [4]. Although it looks at all
partitions H (S, P, R) with S C P explicitly, the worst-case
runtime complexity is not affected by this; it is of order
O(|P|™ +n|P|log|P|) assuming that sorting of the solutions
in all dimensions is carried out as a preprocessing step. Clearly,
this is only feasible for a low number of objectives, and the
next section discusses how the fitness values can be estimated
using Monte Carlo methods.

Details of the procedure are given by Algorithms 1 and 2.
Algorithm 1 just provides the top level call to the recursive
function doSlicing and returns a fitness assignment F, a
multiset containing for each « € P a corresponding pair
(a,v) where v is the fitness value. Note that n at Line 3
denotes the number of objectives. Algorithm 2 recursively
cuts the dominated space into hyperrectangles and returns
a (partial) fitness assignment F’. At each recursion level, a
scan is performed along a specific objective—given by i—
with «* representing the current scan position. The vector
(#1,...,2n) contains for all dimensions the scan positions,
and at each invocation of doSicing solutions (more precisely:
their objective vectors) and reference points are filtered out
according to these scan positions (Lines 3 and 4) where also
dominated solutions may be selected in contrast to [38], [25],
[35]. Furthermore, the partial volume V' is updated before
recursively invoking Algorithm 2 based on the distance to the
next scan position. At the lowest recursion level (i = 0), the
variable V' gives the hypervolume of the partition H (A, P, R),
ie., V =\AUH(A, P, R)) where A stands for the remaining so-
lutions fulfilling the bounds given by the vector (z1, ..., z,)—
UP contains the objective vectors corresponding to A, cf.
Line 3. Since the fitness according to Def. 111.6 is additive with
respect to the partitions, for each a € A the partial fitness value
v can be updated by adding ?z‘}fjl‘ V. Note that the population
is a multiset, i.e., it may contain indifferent solutions or even
duplicates; therefore, all the other sets in the algorithms are
multisets.

The following example illustrates the working principle of
the hypervolume computation.

111.8. Consider

Example the three-objective scenario

Algorithm 1 Hypervolume-based Fitness Value Computation
Require: population P € W, reference set R C Z, fitness
parameter k € N
1: procedure computeHypervolume(P, R, k)
2 FeUepl(a0)}
3: return doSicing(F,R,k,n,1,(c0, 00, . ..
4: end procedure

,00));

Algorithm 2 Recursive Objective Space Partitioning

Require: current fitness assignment F, reference set R C 7,
fitness parameter &k € N, recursion level i, partial volume
V € R, scan positions (z1,...,2,) € R
procedure doSlicing(F, R, k, 4, V, (21, ..

1: . azn))
2 /x filter out relevant solutions and reference points x*/
3 UP — LJ(a,'U)E]-‘7 Vi<j<n: f7(a)§z_7~{f(a)}
4 UR — U(rl,...,rn)ER, Vi<j<n:r;>z; 1. .. ’Tn)}
5; if i =0A UR # 0 then
6: /* end of recursion reached x/
UP|—-1 . .
7 a = 12 k= 5)/(1F] = )
8 /x update hypervolumes of filtered solutions «/
9

: F—10
10: for all (a,v) € F do
1L if V1 <j<n: fj(a) <z then
12: F = F U{(a,v+ 7 V)}
13: else
14: F' — F U{(a,v)}
15: end if
16: end for
17: else if ¢ > 0 then
18: /x recursion continues x/
19: F— F
20: U~ UPUUR
21 /* scan current dimension in ascending order «/
22: while U # () do
23: U = My, e Wi
24: U —{(u1,...,un) € UJu; >u*}
25: if U' #0 then
26: Vi=V. ((min(u/p,,’u;})eU’ ul) —u*)
27: F' « doSicing(*¥', R, k,i—1, V',
28: (2150 ey Zim1, U Zig 1y e ooy 20) )
29: end if
30: U=U'
31 end while
32: end if
33: return F’

34: end procedure

depicted in Fig. 5 where the population contains four
solutions a,b,c,d the objective vectors of which are
f(a) = (_1Oa -3, _Z)a f(b) = (_Sa -1, _S)a f(C) =
(—6,—-8,—10), f(d) = (—4,—5,—11) and the reference
set includes two points » = (—2,0,0),s = (0,—3,—4).
Furthermore, let the parameter & be 2.

In the first call of doSlicing, it holds: = 3 and U contains
all objective vectors associated with the population and all
reference points. The following representation shows U with



Figure 5. Illustration of the principle underlying Algorithm 2 where one looks from (—oo, —oo, —o0) on the front except for the lower left picture where
one looks from (oo, —oo, 0o) to the origin. First, the dominated polytope is cut along the third dimension leading to five slices, which are again cut along
the second dimension and finally along the first dimension. In contrast to existing "Hypervolume by Slicing Objectives’ algorithms, also dominated points are

carried along.

its elements sorted in ascending order according to their third
vector components:

fld): (=4,-5-11) ]
fle): (=6,-8,-10)
U = f(bzi E:g::lzii; (14)
fla): (~10,-3,-2)
re (~2,0,0)

Hence, in the first two iterations of the loop beginning at
Line 22 the variable w* is assigned to f5(d) = —11 resp.
u* = f3(c) = —10. Within the third iteration, U is reduced to
{f(a), f(b),r, s} which yields u* = f3(b) = —8 and in turn
V''=1-(—4 - (—8)) = 4 with the current vector of scan
positions being (z1, 22, 23) = (00, 00, —8); these values are
passed to the next recursion level i = 2 where U is initialized
at Line 20 as follows (this time sorted according to the second
dimension):

fe): (-6,-8,-10) |
f(d)y: (—4,-5,-11)
U = s: (0,-3,-4) (15)
fb): (=8,-1,-8)
r: (-2,0,0)

Now, after three iterations of the loop at Line 22 with
u* = fa(c) = =8, u* = fo(d) = =5, and u* = s = —3, re-
spectively, U isreduced in the fourth iterationto { f(b), »} and
u* issetto fo(b) = —1. Asaresult, V' =1-4-(0—(-1)) =4
and (z1, 22, z3) = (00, —1, —8) which are the parameters for

the next recursive invocation of doSicing where U is set to:

fgbg : E—& —-1,-8) )l

fle): (—=6,-8,—10

VT Ha) (-4,-5, 1) 1o
r: (=2,0,0)

At this recursion level with ¢ = 1, in the second iteration it
holds u* = fi(¢)=—6and V' =1-4-1- (-4 — (—6)) = 8.
When calling doSlicing at this stage, the last recursion level
is reached ( = 0): First, « is computed based on the
population size N = 4, the number of individuals dominating
the hyperrectangle ([UP| = 2), and the fitness parameter
k = 2, which yields o = 1/3; then for b and ¢, the fitness
values are increased by adding .- V/|UP| = 4/3.

Applying this procedure to all slices at a particular recur-
sion level identifies all hyperrectangles which constitute the
portion of the objective space enclosed by the population and
the reference set.

IV. ESTIMATING HYPERVOLUME CONTRIBUTIONS USING
CARLO SIMULATION

As outlined above, the computation of the proposed
hypervolume-based fitness scheme is that expensive that only
problems with at maximum four or five objectives are tractable
within reasonable time limits. However, in the context of
randomized search heuristics one may argue that the exact
fitness values are not crucial and approximated values may
be sufficient; furthermore, if using pure rank-based selection
schemes, then only the resulting order of the individuals
matters. These considerations lead to the idea of estimating
the hypervolume contributions by means of Monte Carlo
simulation.

The basic principle is described and investigated in the
following subsection, while more advanced sampling strategies



that automatically adjust the number of samples to be drawn
are discussed in the second part of this section.

A. Basic Concept

To approximate the fitness values according to Defini-
tion 111.6, we need to estimate the Lebesgue measures of the
domains H,(a, P, R) where P € W is the population. Since
these domains are all integrable, their Lebesgue measure can
be approximated by means of Monte Carlo simulation.

For this purpose, a sampling space S C Z has to be
defined with the following properties: (i) the hypervolume
of S can easily be computed, (ii) samples from the space
S can be generated fast, and (iii) S is a superset of the
domains H;(a, P, R) the hypervolumes of which one would
like to approximate. The latter condition is met by setting
S = H(P,R), but since it is hard both to calculate the
Lebesgue measure of this sampling space and to draw samples
from it, we propose using the axis-aligned minimum bounding
box containing the H;(a, P, R) subspaces instead, i.e.:

S = 1{(z1,...,

where

zn) €EZ|VI<i<n:l; <z <wu} (17)

li =

U; =

mingep fi(a)
max, . ..r,)er Ti

(18)

for 1 < i < n. Hence, the volume V' of the sampling space S
is given by V' = [T"", max{0,u; — [;}.

Now given S, sampling is carried out by selecting M
objective vectors si,...,sy from S uniformly at random.
For each s; it is checked whether it lies in any partition
Hi(a,P,R) for1 <i < kanda € P.This can be determined
in two steps: first, it is verified that s; is "below’ the reference
set R, i.e., it exists » € R that is dominated by s;; second,
it is verified that the multiset A of those population members
dominating s; is not empty. If both conditions are fulfilled,
then we know that—given A—the sampling point s; lies in
all partitions H;(a, P, R) where i = |A| and a € A. This
situation will be denoted as a hit regarding the ith partition of
a. If any of the above two conditions is not fulfilled, then we
call s; a miss. Let Xj(”“) denote the corresponding random
variable that is equal to 1 in case of a hit of s; regarding the
ith partition of a and 0 otherwise.

Based on the M sampling points, we obtain an estimate
for A(H;(a, P, R)) by simply counting the number of hits and
multiplying the hit ratio with the volume of the sampling box:

M 1,a

M

This value approaches the exact value \(H;(a, P, R)) with
increasing M by the law of large numbers. Due to the linearity
of the expectation operator, the fitness scheme according to
Eq. (11) can be approximated by replacing the Lebesgue
measure with the respective estimates given by Eqg. (19):

k X(7 a))
*(a, P, R) Z% (2317‘/ (20)

A(Hi(a,P,R)) = vV (19)

M

i=1

Algorithm 3 Hypervolume-based Fitness Value Estimation
Require: population P € W, reference set R C Z, fitness
parameter k£ € N, number of sampling points M € N

1: procedure estimateHypervolume(P, R, k, M)

2: [+ determine sampling box S/
3: for i« 1,n do
4: l; = mingep fi(a)
5: U; = MaAX(py . r.)eRTi
6: end for
7 S — [ll,ul] X e X [Zn,un]
8: V [T~ max{0, (u; — 1;)}
o: /x reset fithess assignment «/
10: F = UaeP{(aa 0)}
11: [+ perform sampling s/
12: for j «— 1, M do
13: choose s € S uniformly at random
14: if 3r € R: s <r then
18 UP — Uaep, fa)<s1f(a)}
16: if |UP| < k then
17: /* hit in a relevant partition */
18: a— [Pt A
=1 PI=
19: /*x update hypervolume estimates x/
20: Fre—10
21: for all (a,v) € F do
22: if f(a) < s then
23: F—=F u{(a,v+ 75 c)}
24: else
25: F'— F U{(a,v)}
26: end if
27 end for
28: F—F
20: end if
30: end if
3L end for
32: return F

33: end procedure

The details of estimation procedure are described by Algo-
rithm 3 which returns a fitness assignment, i.e., for each
a € P the corresponding hypervolume estimate f{j(a, P, R). It
will be later used by the evolutionary algorithm presented in
Section V. Note that the partitions H;(a, P, R) with ¢ > k do
not need to be considered for the fitness calculation as they do
not contribute to the I} values that we would like to estimate,
cf. Def. 111.6.

In order to study how closely the sample size M and the
accuracy of the estimates is related, a simple experiment was
carried out: ten imaginary individuals a € A were generated,
the objective vectors f(a) of which are uniformly distributed
at random on a three dimensional unit simplex, similarly to
the experiments presented in Table Il. These individuals were
then ranked on the one hand according to the estimates I'A|
and on the other hand with respect to the exact values I, 'Al
The closer the former ranking is to the latter ranking, the
higher is the accuracy of the estimation procedure given by
Algorithm 3. To quantify the differences between the two



Table 111
ACCURACY OF THE RANKING OF 10 INDIVIDUALS ACCORDING Tof}lo
(20) IN COMPARISON TO 10 FOR DIFFERENT SAMPLE SIZES. THE
PERCENTAGES REPRESENT THE NUMBER OF PAIRS OF INDIVIDUALS
RANKED CORRECTLY.

number of samples M ranking accuracy

10t 56.0%
102 74.1%
1023 89.9%
10* 96.9%
10° 99.2%
106 99.8%
107 100.0 %

rankings, we calculated the percentage of all pairs (i, j) with
1 < i < j < |A| where the individuals at the ith position
and the jth position in the ranking according to I,‘LA‘ have the
same order in the ranking according to f,‘f”, see [30]. The
experiment was repeated for different numbers of sampling
points as shown in Table I11. The experimental results indicate
that 10.000 samples are necessary to achieve an error below
5% and that 10.000.000 sampling point are sufficient in this
setting to obtain the exact ranking.

B. Adaptive Sampling

Seeing the close relationship between sample size and ac-
curacy, one may ask whether M can be adjusted automatically
on the basis of confidence intervals. That means sampling is
stopped as soon as the statistical confidence in the estimated
fitness values reaches a prespecified level. The hope is that
thereby the estimation is less sensitive to the choice of M and
that the number of drawn samples can be reduced.

Using the normal approximation of the distribution of an
estimate 17 (a, A, R), we can state there is a probability of L,
that the true value 15 (a, A, R) is in

I}f(a,A, R) (S IA}]:(G, A, R) + 31/2+L/2\/\//:a}(ff’f(a,14, R))
(21)
where zg denotes the g-percentile of a standard normal distri-
bution and Var(If(a, A, R)) denotes the estimated variance
of the estimate according to (30), see Appendix B for details.

Based on this confidence interval, we can derive a lower
bound for the probability C',,, that the individual with the
smallest estimated contribution 1 }j (a, A, R) contributes least to

the hypervolume (see Appendix Bla). Let A = {a1,..., a4}
with a1 <a; Vi e {1, ceey |A|}, then
|A]
Cw>1-(1-L)/2=> P(If(a;,A,R)>B) (22
=2

where B denotes the upper end of confidence interval (21)
for confidence level (L + 1)/2. Similiarly, a lower bound for
the confidence C,., that the ranking of individuals is correct

10

follows as
Al-1
Cr>1- Y P(If(ai,A,R) < B))
i=1
[A]
— Y P(f(ai,A,R) > Bi_y)

1=2

(23)

(see Appendix Blc for details, including the meaning of B;).

The lower bound (22) can be used to limit the number of
samples used to estimate 7/ (a, A, R) in the environmental
selection step, and (23) to limit the number of samples in
the mating selection. Algorithm 4 gives an adaptive sam-
pling procedure—based on the confidence levels—that re-
sembles Algorithm 3. In contrast to the latter, the elements
(a,v,(h1,...,hp))) of F take a third component that records
the number of hits %, per partition H;(a, A, R), which are
needed to calculate the confidence level.

In the following we investigate to what extend the adaptive
adjustment of sampling size reduces the total number of
samples needed. For this purpose, assume from a Pareto-front
approximation A, some individuals are removed one by one.
In each removal step, the confidence level C, is calculated
after a certain number of samples © are drawn, here set to
t 100. If C,, exceeds a user defined level L, then the
adaptive sampling stops. Otherwise it continues, periodically
recalculating the confidence level after © samples until either
the confidence exceeds L or the maximum number of samples
M0z 1S Teached.

We consider the following scenario: 20 individuals a € A
are generated whose objective values are set uniformly at
random on a 3 dimensional unit simplex. From these 20
individuals, 10 are removed one by one based on the smallest
indicator value If(a, A, R) with R = (2,2,2) and k
|A| — 10. The resultant set of 10 individuals A,.; acts as
reference to assess the quality of the two sampling strategies.

The same procedure is then carried out for the estimated
indicator f{j(a, A, R) using a constant number of samples M
as well as using an adaptive number of samples according
to Algorithm 4. In the latter case, the maximum number of
samples M,, .. is set to M and the desired confidence level
L is set to 0.99. The quality of the resulting set A,qqptive 1S
assessed by counting the percentage of individuals which are
iN Agdaptive DUt NOtIN Apcp, 06, [Arer N Aadaptive| /| Arer]- IN
the same way the percentage is calculated for the set A .onstant
that results from applying the constant sampling strategy.

Figure 6 shows the percentages obtained for both the
constant and adaptive sampling approach. For small maximum
number of samples M,,,., the adaptive sampling algorithm
hardly ever reaches the desired confidence level L. Hence,
both the number of samples and ranking accuracy is similar
to the constant approach. However, as the maximum sample
size increases, the more often L is reached. In this case, the
number of samples is only half the number needed by the
algorithm based on the constant sampling strategy while the
accuracy of the estimate is only marginaly affected. Since the
confidence level is set to a relatively high value, the accuracy



is only affected very slightly. This indicates that using adaptive
sampling might be beneficial to speed up sampling when the
number of samples is large.

0.99
—————————— adaptive sampling i
—— constant sampling
related sample sizes
0.97+ |
w0
2 i
2
z
g
< 0.95- g
g
=
3 i
o
0.93+ g
2 3 7 5 G 7
10 10 10 10 10 10

total number of samples

Figure 6. Ranking accuracy with increasing (maximum) number of samples
for the constant and adaptive sampling strategy. As the grey arrows indicate,
the latter uses less samples than the constant approach if the sample size is
large enough. On the other hand, the two approaches differ only slightly when
few samples are used.

V. HYPE: HYPERVOLUME ESTIMATION ALGORITHM FOR
MULTIOBJECTIVE OPTIMIZATION

In this section, we describe an evolutionary algorithm
named HypE (Hypervolume Estimation Algorithm for Mul-
tiobjective Optimization) which is based on the fitness assign-
ment schemes presented in the previous sections. When the
number of objectives is small (< 3), the hypervolume values
It are computed exactly using Algorithm 1, otherwise they
are estimated based on Algorithm 3.

The main loop of HypE is given by Algorithm 5. It
reflects a standard evolutionary algorithm and consists of
the successive application of mating selection (Algorithm 6),
variation, and environmental selection (Algorithm 7). As to
mating selection, binary tournament selection is proposed here,
although any other selection scheme could be used as well. The
procedure variation encapsulates the application of mutation
and recombination operators to generate N offspring. Finally,
environmental selection aims at selecting the most promising
N solutions from the multiset-union of parent population
and offspring; more precisely, it creates a new population by
carrying out the following two steps:

1) First, the union of parents and offspring is divided into
disjoint partitions using the principle of nondominated
sorting [19], [12], also known as dominance depth. Start-
ing with the lowest dominance depth level, the partitions
are moved one by one to the new population as long
as the first partition is reached that cannot be transfered
completely. This corresponds to the scheme used in most
hypervolume-based multiobjective optimizers [14], [22],

[9].
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Algorithm 4 Hypervolume-based Fitness Value Estimation
With Adaptive Sampling
Require: population P € W, reference set R C Z, fitness
parameter £ € N, maximum number of sampling points
Mmax € N, desired confidence L, sampling interval ©
1: procedure estimateHypervolumeAS P, R, k, Mpyax, L)

2 /* determine sampling box S =/
3 for i« 1,n do

4 li = mingep fi(a)

5 Ui = MaAX(py .r,)ER Ti

6 end for

7 S<—[l1,u1]><-~-x[ln,un]

8 V —T17, max{0, (u; — 1;)}

9 /* reset fitness assignement

10: third component: number of hits per H;(a, P, R) /

11 F = Uaepi(a,0,(0,...,0))}
12: /* compute «-vector according to Equation (13) */

13: a«— (0,...,0)
14: for i« 1,k do

. k=1 k-l
15 a; < [[o) [A—1

16: end for

17: / perform sampling */

18: C — 0 /« either Cy, (env. sel.) or C, (mat. sel) =/
19: j—1

20: while j < My and C < L do

21 choose s € S uniformly at random

22 if 3re R: s <r then

23 F' 1

24:; /+ update estimates and hit counts x/

25: for all (a,v,(hy,...,hp|)) € F do

26: if V1 <j<n: fj(a) <s; then

27: (h/l,,hip‘)<—(h1,,h‘p|)
28: th|‘_th|+1

29: ]—"’<—.7-"U{(a,v+‘%‘-%,

30: (hllavhiP\))}
31 else

32: F'—F U{(a,v,(h1,...,hp))}
33: end if

34: end for

35: F—F

36: end if

37 /* Recalculate confidence level reached x/
38 if mod (4,0) =0 then

39: C «+ confidence according to (22) or (23)
40: end if

41 end while

42 return F

43: end procedure

2) The partition that only fits partially into the new pop-
ulation is then processed using the method presented
in Section I1I-B. In each step, the fitness values for
the partition under consideration are computed and the
individual with the worst fitness is removed—if multiple
individuals share the same minimal fitness, then one of
them is selected uniformly at random. This procedure



Algorithm 5 HypE Main Loop

Algorithm 6 HypEMating Selection

Require: reference set R C Z, population size N € N, Require: population P € ¥, reference set R C Z, number of

number of generations g.,.x, humber of sampling points
M eN
initialize population P by selecting N solutions from X
uniformly at random
g0
while g < gmax do
P’ — matingSelection(P, R, N, M)
P — variation(P’, N)
P — environmental Selection(P U P”, R, N, M)
g—g+1
end while

is repeated until the partition has been reduced to the
desired size, i.e., until it fits into the remaining slots left
in the new population.

Concerning the fitness assignment, the number of objectives
determines whether the exact or the estimated I values
are considered. If less than four objectives are involved,
we recommend to employ Algorithm 1, otherwise to use
Algorithm 3. The latter works with a fixed number of sampling
points to estimate the hypervolume values I}7, regardless of the
confidence of the decision to be made; hence, the variance of
the estimates does not need to be calculated and it is sufficient
to update for each sample drawn an array storing the fitness
values of the population members.

Instead of Algorithm 3, one may also apply the adaptive
sampling routine described in Algorithm 4 when estimating
the hypervolume contributions. To this end, the variance of the
estimates is calculated after a certain number of initial samples
and from this, the confidence level is determined. If this lies
below a user-defined level, then the sampling process contin-
ues. Since this process can last arbitrarily long (the difference
between the hypervolume contributions of two solutions can
be arbitrarily small), an upper bound for the maximal number
of samples M,, .. has to be defined. If this number is reached,
a decision is made based on the current estimates regardless
of the confidence level. The main advantage of this adaptive
procedure is that it is robust with respect to the choice of the
sample size M. Its main disadvantage is the need to store for
each population member the number of hits in all domains
H;(a, P, R), which slows down the sampling considerably, as
will be shown in Section VI-C.

VI. EXPERIMENTS

This section serves two goals: (i) to investigate the influence
of specific algorithmic concepts (fitness, sample size, adaptive
sampling) on the performance of HypE, and (ii) to study the
effectiveness of HypE in comparison to existing MOEAs. A
difficulty that arises in this context is how to statistically com-
pare the quality of Pareto-set approximations with respect to
the hypervolume indicator when a large number of objectives
(n > 5) is considered. In this case, exact computation of
the hypervolume becomes infeasible; to this end, we propose
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offspring N € N, number of sampling points M € N

1: procedure matingSelection(P,R,N,M)

2: if n <3 then

3: F «— computeHypervolume(P, R, N)

4: else

5: F «— estimateHypervolume(P, R, N, M)
6 end if

7 Q10

8 while |Q| < N do

9: choose (a,v,), (b,vp) € F uniformly at random
10: if v, > v, then

1L Q—Qu{a}

12: else

13: Q—QU{b}

14: end if

15: end while

16: return Q

17: end procedure

Monte Carlo sampling using appropriate statistical tools as
detailed below.

A. Experimental Setup

HypE is implemented within the PISA framework [6] and
tested in two versions: the first (HypE) uses fitness-based
mating selection as described in Algorithm 6, while the second
(HypE*) employs a uniform mating selection scheme where
all individuals have the same probability of being chosen
for reproduction. Unless stated otherwise, for sampling the
number of sampling points is fixed to M = 10,000 and
M e = 20,000 respectively, both kept constant during a
run.

HypE and HypE™* are compared to three popular MOEAsS,
namely NSGA-II [12], SPEA2 [41], and IBEA (in combination
with the e-indicator) [40]. Since these algorithms are not
designed to optimize the hypervolume, it cannot be expected
that they perform particularly well when measuring the quality
of the approximation in terms of the hypervolume indicator.
Nevertheless, they serve as an important reference as they are
considerably faster than hypervolume-based search algorithms
and therefore can execute a substantially larger number of gen-
erations when keeping the available computation time fixed.
On the other hand, dedicated hypervolume-based methods are
included in the comparisons. The algorithms proposed in [14],
[22], [9] use the same fitness assignment scheme which can be
mimicked by means of a HypE variant that only uses the 7}
values for fitness assignment, i.e., k is set to 1, and employs the
routine for exact hypervolume calculation (Algorithm 1). We
will refer to this approach as RHV (regular hypervolume-based
algorithm)—the acronym RHV* stands for the variant that
uses uniform selection for mating. However, we do not provide
comparisons to the original implementations of [14], [22], [9]
because the focus is on the fitness assignment principles and



Algorithm 7 HypE Environmental Selection

Require: population P € W, reference set R C Z, number of
offspring N € N, number of sampling points M € N
1: procedure environmental Selection(P,R,N,M)
2: P’ — P /+ remaining population members x/
3 Q « 0 /* new population x*/
4 Q'+ 0 /* current nondominated set */
5; /x iteratively copy nondominated sets to @ */
6
7
8
9

repeat
Q—QuUQ
/* determine current nondominated set in P’ x/
. Q/,PH - (Z)

10 for all @ € P’ do
11: ifvbe P': b<a=a=0bthen
12: Q — Q' U{a}
13: else
14: P" — P"U{a}
15: end if
16: end for
17: P — P

180 until Q|+ |Q'|>N vV P =0
19: /* truncate last non-fitting nondominated set @)’ =/
0. k=Q+|Q-N

21: while £ > 0 do

22: if n <3 then

23: F « computeHypervolume(Q’, R, k)

24:; else

25: F «— estimateHypervolume(Q’, R, k, M)
26: end if

27 /* remove worst solution from @’ */

28: Q 0

29: removed — false

30: for all (a,v) € F do

31 if removed = true V v # min(, ,ye #{v} then
32: Q — Q' U{a}

33: else

34: removed « true

35: end if

36: end for

37: k—k-—1

38: end while

39: Q—QuUQ

40: return @

41: end procedure

not on specific data structures for fast hypervolume calculation
as in [14] or specific variation operators as in [22]. Further-
more, we consider the sampling-based optimizer proposed
in [1], here denoted as SHV (sampling-based hypervolume-
oriented algorithm); it more or less corresponds to RHV
with adaptive sampling. Finally, to study the influence of
the nondominated sorting we also include a simple HypE
variant named RS (random selection) where all individuals
are assigned the same constant fitness value. Thereby, the
selection pressure is only maintained by the nondominated
sorting carried out during the environmental selection phase.

As basis for the comparisons, the DTLZ [13], the WFG [20],
and the knapsack [44] test problem suites are considered since
they allow the number of objectives to be scaled arbitrarily—
here, ranging from 2 to 50 objectives. For the DTLZ problem,
the number of decision variables is set to 300, while for the
WFG problems individual values are used, see Table IV. As
to the knapsack problem, we used 400 items which where
modified with mutation probability 1 by one-bit mutation
and by one-point crossover with probability 0.5. For each
benchmark function, 30 runs are carried out per algorithm
using a population size of N = 50 and a maximum number
gmax = 200 of generations (unless the computation time is
fixed). The individuals are represented by real vectors, where
a polynomial distribution is used for mutation and the SBX-
20 operator for recombination [11]. The recombination and
mutation probabilities are set according to [13].

B. Satistical Comparison Methodology

The quality of the Pareto-set approximations are assessed
using the hypervolume indicator, where for less than 6 objec-
tives the indicator values are calculated exactly and otherwise
approximated by Monte Carlo sampling as described in [2].
When sampling is used, uncertainty of measurement is in-
troduced which can be expressed by the standard deviation
of the sampled value u (15 (A, R)) = Ix(A, R)\/p(1 —p)/n,
where p denotes the hit probability of the sampling process
and Iy the hypervolume estimate. Unless otherwise noted,
1,000,000 samples are used per Pareto-set approximation.
For a typical hit probability between 10% to 90% observed,
this leads to a very small uncertainty below 102 in relation
to Iy. Therefore, it is highly unlikely that the uncertainty
will influence the statistical test applyied to the hypervolume
estimates and if it does nonetheless, the statistical tests become
over-conservative. Hence, we do not consider uncertainty in
the following tests.

Let A; with 1 < 4 < [ denote the algorithms to be compared.
For each algorithm A;, the same number r of independent
runs are carried out for 200 generations. For formal reason,
the null hypothesis that all algorithms are equally well suited
to approximate the Pareto-opimal set is investigated first, using
the Kruskal-Wallis test at a significance level of o = 0.01 [10].
This hypothesis could be rejected in all test cases described
below. Thereafter, for all pairs of algorithms the difference in
median of the hypervolume is compared.

To test the difference for significance, the Conover-Inman
procedure is applied with the same « level as in the Kruskal-
Wallis test [10]. Let d; ; be 1, if A; turns out to be significantly
better than A; and 0 otherwise. Based on §;;, for each
algorithm A; the performance index P(A;) is determined as
follows:

(24)

oS
Il
B

This value reveals how many other algorithms are better
than the corresponding algorithm on the specific test case.
The smaller the index, the better the algorithm; an index of



Table 1V
NUMBER OF DECISION VARIABLES AND THEIR DECOMPOSITION INTO POSITION AND DISTANCE VARIABLES AS USED FOR THE WFG TEST FUNCTIONS
DEPENDING ON THE NUMBER OF OBJECTIVES.

Objective Space Dimensions (n)

2d 3d 5d 7d 10d 25d 50d
distance parameters 20 20 42 58 50 76 150
position parameters 4 4 8 12 9 24 49
decision variables 24 24 50 70 59 100 199
zero means that no other algorithm generated significantly 90X 10°
better Pareto-set approximations in terms of the hypervolume — § e
indicator. Z18 ¢
€16t
C. Results §14 -
2
In the following, we discuss the experimental results 121
grouped according to the foci of the investigations. 810
1) Constant Versus Adaptive Sampling: First, the issue of g | | | | | | | | |
adaptive sampling is examined. We compare HypE with its 8 0 20 40 60 80 100 120 140 160 180 200
counterpart that uses the adaptive sampling strategy described
in Algorithm 4 in both environmental selection (employ- generation
ing Equation (22)) and mating selection (emplyoing Equa-
Figure 7.  Average number of samples used per removal for adaptive

tion (23)) with confidence level 0.1 and maximal number of
samples of M = 20, 000. As mentioned above, standard HypE
is run with a sample size of M = 10,000 and a constant
number of 200 generations.

The experiments indicate that for the 17 test problems each
instantiated with 5, 7, 10, 25, and 50 objectives, the adaptive
strategy beats the constant sampling method in 12 cases, which
is vice versa in 10 cases better than adaptive sampling. In the
remaining 63 instances, the two versions of HypE do not differ
significantly in terms of the hypervolumes achieved.

While both strategy show about the same performance, it is
expected that adaptive sampling needs less computation time
because fewer samples are used. However, this is not the case:
the adaptive sampling takes between 2.4 and 5.2 times longer
than its counterpart, the difference increasing with the number
of objectives. Two main reasons can be mentioned to explain
the additional computation time:

o The confidence levels are seldom reached. This means
the maximum number of samples are drawn with the
overhead of calculating the variance of the points from
time to time. Figure 7 shows the average number of
samples drawn for the DTLZ 2 test problem with 5
objectives. While at the initial stage of the run about
50% of the maximum number of samples are used,
the percentage steadily increases to over 95% after 100
generations.

Calculating the variances requires to take track of the
hits in each partition H;(a, A, R) for every population
member a. This slows down the sampling process con-
siderably.

These observations lead to the conclusion that the benefits of
adaptive sampling are mainly compensated by the additional
computational overhead. For this reason, only HypE with a

14

HypE with significance level 0.05 and a maximum of 20, 000 samples. The
testproblem is DTLZ 2 with 5 objectives and the average is based on 30 runs.

constant sample size is considered in the following compar-
isons. Future research may be necessary to investigate how
adaptivity could be integrated more efficiently. For instance,
as Figure 7 indicates, one could use adaptive sampling in an
early stage of the evolutionary run, say in the first twenty
generations, and then switch to constant sampling. Further-
more, adaptive sampling might pay off when the user defined
confidence L is close to 1 and large number of samples need
to be drawn.

2) Exact Hypervolume Computation Versus Sampling:
Next, we compare HypE with RHV—due to the large com-
putation effort caused by the exact hypervolume calculation
only on a single test problem, namely DTLZ2 with 2, 3, 4,
and 5 objectives. Both HypE and HypE* are run with exact
fitness calculation (Algorithm 1) as well as with the estimation
procedure (Algorithm 3); the former variants are marked with
a trailing ’e’, while the latter variants are marked with a trailing
’-s”. All algorithms run for 200 generations, per algorithm 30
runs were performed.

Figure 8 shows the hypervolume values normalized for
each test problem instance separately. As one may expect,
HypE beats HypE*. Moreover, fitness-based mating selection
is beneficial to both HypE and RHV. The two best variants,
HypE-e and RHV, reach about the same hypervolume values,
independently of the number of objectives. Although HypE
reaches a better hypervolume median for all four number
of objectives, the difference is never significant °. . Hence,

5According to the Kruskal-Wallis test described in Section VI-B with
confidence level 0.01.
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Figure 9. Mean performance score over all test problems for different number
of objectives. The smaller the score, the better the Pareto-set approximation
in terms of hypervolume.

HypE can be considered an adequate alternative to the regular
hypervolume algorithms; the main advantage though becomes
evident when the respective fitness measures need to be
estimated, see below.

3) HypE Versus Other MOEAs. Now we compare HypE
and HypE™*, both using a constant number of samples, to other
multiobjective evolutionary algorithms. Table V on pages 23—
25 shows the performance score and mean hypervolume on the
17 test problems mentioned in the Experimental Setup Section.
Except on few testproblems HypE is better than HypE*. HypE
reaches the best performance score overall. Summing up all
performance scores, HypE vyields the best total (76), followed
by HypE* (143), IBEA (171) and the method proposed in
[1] (295). SPEA2 and NSGA-II reach almost the same score
(413 and 421 respectively), clearly outperforming the random
selection (626).

In order to better visualize the performance index, we
show to Figures where the index is summarized for dif-
ferent test-problems and number of objectives respectively.
Figure 9 shows the average performance over all testproblems
for different number of objectives. Except for two objective
problems, HypE vyields the best score, increasing its lead
in higher dimensions. The version using uniform mating
selection, HypE*, is outperformed by IBEA for two to seven
objectives and only thereafter reaches a similar score as HypE.
This indicates, that using non-uniform mating selection is
particularly advantageous for small number of objectives.

Next we look at the performance score for the individual
test-problems. Figure 10 shows the average index over all
number of objectives. For DTLZ2, 4, 5 and 7, knapsack and
WFGS8, IBEA outperforms HypE, for DTLZ7 and knapsack,
SHV as well is better than HypE. On the remaining 11
testproblems, HypE reaches the best mean performance.

Note that the above comparison is carried out for the case
all algorithms run for the same number of generations and
HypE needs longer execution time, e.g., in comparison to
SPEA2 or NSGA-II. We therefore investigate in the following,
whether NSGA-II and SPEA2 will not overtake HypE given
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Figure 10. Mean performance score over all dimensions for different test
problems, namely DTLZ (Dx), WFG (Wx) and knapsack (K1). The values of
HypE+ are connected by a solid line to easier assess the score.

a constant amount of time. Figure 11 shows the hypervolume
of the Pareto-set approximations over time for HypE using
the exact fitness values as well as the estimated values for
different samples sizes M. Although only the results on WFG9
are shown, the same experiments were repeated on DTLZ2,
DTLZ7, WFG3 and WFG6 and provided similar outcomes.
Even though SPEA2, NSGA-II and even IBEA are able to
process twice as many generations as the exact HypE, they do
not reach its hypervolume. In the three dimensional example
used, HypE can be run sufficiently fast without approximating
the fitness values. Nevertheless, the sampled version is used as
well to show the dependency of the execution time and quality
on the number of samples M. Via M, the execution time
of HypE can be traded off against the quality of the Pareto-
set approximation. The fewer samples are used, the more the
behavior of HypE resembles random selection. On the other
hand by increasing M, the quality of exact calculation can be
achieved, increasing the execution time, though. For example,
with M = 1,000, HypE is able to carry out nearly the
same number of generations as SPEA2 or NSGA-II, but the
Pareto-set is just as good as when 100, 000 samples are used,
producing only a fifteenth the number of generations. In the
example given, M = 10, 000 represents the best compromise,
but the number of samples should be increased in two cases:
(i) the fitness evaluation takes more time. This will affect
the faster algorithm much more and increasing the number of
samples will influence the execution time much less. (ii) More
generations are used. In this case, HypE using more samples
might overtake the faster versions with fewer samples, since
those are more vulnerable to stagnation.

VII. CONCLUSIONS

This paper proposes HypE (Hypervolume Estimation Algo-
rithm for Multiobjective Optimization), a novel hypervolume-
based multiobjective evolutionary algorithm that can be ap-
plied to problems with arbitrary numbers of objective func-
tions. It incorporates a new fitness assignment scheme based



0.9

0.8
0.7

F---C T F--

2 0.6

L

-1

-

=
Sl

=

| .

0.4
0.8

===

AR i I T

0.2

F---

0.1

F F=-=-=-=---

—

p----

F---{ TF-A
- F---1

F--- T F-----1

-

F--{ TFHA

+

HypE*-st

RHV*

HypE-s
HypE-e -

RHV

HypE*-sp F----
RHV*

HypE-s
HypE-e -

RHV

HypE*-sk ¢---
HypE*-ef
RHV*

HypE-s
HypE-e -

RHV

HypE*-st
HypE*-ep F-----]
RHV*

HypE-s F
HypE-e -

RHV

vo |HypE*-ef #------
oo | HypE*-ef

objectives objectives

4 objectives 5 objectives

Figure 8. Comparison of the hypervolume indicator values for different variants of HypE and the regular hypervolume algorithm (RHV) on DTLZ2 with 2,
3, 4, and 5 objectives. For presentation reasons, the hypervolume values are normalized to the minimal and maximal values observed per problem instance.

550 1T e L1123
ypE-e e y
SHV-1k 522 e HypE-10k
m.szs - SHV-i0k o SHV-10k
HypE-100k
£ 2353 YPE-100
3> SPEA2
=.500f SHV-100k Y
() ) J | A N Y
£ M e LT
'V’l 2434
475 “ / d
J 'J NSGA-II
o 1 2 3 4 s 6 7 8 9 100 1 2 3 4 5 & 7 8 9 10
minutes minutes

Figure 11.
The test problem is WFG9 for three objectives. HypE is compared to the algor|

Hypervolume process over ten minutes of HypE+ for different samples sizes « in thousands (Hy-zk) as well as using the exact values (Hy-e).

ithms presented in Section VI, where the results are split in two figures with

identical axis for the sake of clarity. The numbers at the left border of the figures indicate the total number of generations.

on the Lebesgue measure, where this measure can be both ex-
actly calculated and estimated by means of Monte Carlo sam-
pling. The latter allows to trade-off fitness accuracy versus the
overall computing time budget which renders hypervolume-
based search possible also for many-objective problems, in
contrast to [14], [22], [9]. HypE is available for download at
http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/.

HypE was compared to various state-of-the-art MOEAS
with regard to the hypervolume indicator values of the gen-
erated Pareto-set approximations—on the DTLZ [13], the
WFG [20], and the knapsack [44] test problem suites. The
simulations results indicate that HypE is a highly competitive
multiobjective search algorithm; in the considered setting the
Pareto front approximations obtained by HypE reached the
best hypervolume value in 6 out of 7 cases averaged over all

16

testproblems.

A promising direction of future research is the development
of advanced adaptive sampling strategies that exploit the avail-
able computing resources most effectively, such as increasing
the number of samples towards the end of the evolutionary
run.
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APPENDIX
A. Proofs for Section Il
Proof of Theorem I11.3, page 4: According to 5 it holds:
In(A,R) = A(H(A,R))
= ( U H(S,A,R)) .
SCA
By dividing the subsets into groups of equal size, one obtains

U U H(S,A,R))

1<i<|A|SCA
[S]=i
which can be rewritten as
Y

=Y AU H5.4,R)

i=1 SCA

|S|=i
because the inner unions are all disjoint. Now, for each subset
of size ¢ we count the Lebesque measure once for each element
and then divide by 1/3:

\A\

—Z S AU HsAR) .

i=1 a€A SCA
|S|=i
a€sS

Changing the order of the sums results in

41

-3 3 - A( U H(S.A.R))
acA i=1 SCA
b

and using Definition I11.2 we obtain

=Y In(a,AR)

acA

which concludes the proof.

[ ]
Proof of Theorem I11.4, page 4: From Theorem 111.3 we
know that

Z Ih(bla{a}UBlaR):IH({a}UBlvR)
bie{a}UB;

which—following Definition I11.1—equals

= A(H({a}U By, R)) .

Since {a} < By, it holds H(b, R) C H(A,R) for all b € By
and therefore the above formula can be simplified to

The same holds analogically for the right-hand side of the
equation in Theorem I11.4 which proves the claim. [ |

Proof of Theorem I11.7, page 4: Definition 111.6 states
that

If(a, A R) = |S|Z ZITI H(T,A,R))

Ses |1cs
acT
where S denotes the set of subsets of A, that contain &
elements, one of which is individual a, i.e., S = {S C A;a €
SNA|S| = k}. Inserting the definition of S leads to

Z Z H(T,A,R))  (25)

SeA TCS

|S|—k aeT

a€s
To combine the two summations of the previous equa-
tion, let o(7) denote the number of times the summand
mrA(H (T, A, R)) is added for the same set T’

1 1
=— o(T)=AH(T,A,R)
|3| Z |T| ( )
splitting up into summation over subsets of equal size gives

|3|Z > o(T)A(H(T, A, R))

TCA

|T|=i

acT
For symmetry reasons, each subset 7" with cardinality |T'| = i
has the same number of occurences o(7T') =: o;

ol Z"l > A(H(T,AR))

i=1 TCA
|T|=i
acT

18
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Figure 12. T is a subset of S, which in turn is a subset of A; all three
sets contain a. Given one particular 7" of size i there exist ( “2‘_7) subsets
S C A of size k which are a superset of 7.

since all H(T, A, R) in the sum are disjoint according to (5)

i=1 TCA
|T|=i
acT
and according to Equation (6)
k
Z (a, 4, R))

i ISI

After having transformed the original equation, we deter-
mine the number o;, i.e., the number of times the term
)\( (T, A, R)) appears in (25). The term is added once
every time the corresponding set 7" is a subset of S. Hence,
o(T') with |T'| = ¢ corresponds to the number of sets S that are
a superset of T". As depicted in Figure A, T defines 7 elements
of S and the remaining k& — i elements can be chosen freely
from the |A| — i elements in A that are not yet in S.

Therefore, there exist ("2‘ -7) subsets S € S that contain one
particular T" with |T| = ¢ anda e T. Therefore, o(T) = 0; =

(14179). Likewise, the total number of sets S is [S] = (4171).
Hence
0j (‘A‘ 1)
ST
_ (A=) k= DA = 1) = (k= 1))!
(k=)A= 1) = (k= ))(A] - 1)!
_ (A =)k - 1)!
(A =Dk — i)
_ -1k =-2)--(k-(i—1))
(|A| - 1)(|A| -2)--- (Al - (i -1)
- H IAI —J
Therefore
k
IhaAR:Z% i(a, A, R))
which concludes the proof. i |

B. Derivation of Confidence Intervals used in 1V-B

Here, we consider confidence intervals for f}f(a,A,R) in
order to adaptively determine the number of sampling points

to be drawn in order to reach a user predefined confidence
level. However, there are also other uses: for instance, to
indicate the quality when reporting the values to a decision
maker or carrying out statistical tests; or to adapt the selection
probabilites for fitness proportionate selection meaning that
high-fitness individuals are penalized whenever the fitness
value comes along with a high uncertainty.

The confidence intervals can be derived by determining the
distribution of a sampled value. To this end, a new discrete
random variable Z is introduced with the property Pr(Z =
«; /1) = p; where p; denotes the probability of a hit in the ith
partition, i.e., a hit in H;(a, A, R); p; corresponds to the ratio
between the volume of the particular partition and the volume
of the sampling space. Formula (20) can now be rewritten as
a sum of M random variables Z; distributed independently
identically as Z

If(a, A, R) (26)

§|<

M
>z
s=1

According to the central limit theorem, this estimate is ap-
proximately normally distributed with mean I/ (a, A, R and
the following variance:

Var(Ih (a, A, R))

MQ(Z Var
22 Z O”O‘JCOVR,P)) (28)

1=1 j=i+1

where P; denotes the number of hits in the sth partition.
The variance of P; follows from the binomial distribution as

(27)

Var(P;) = Mp;(1 — p;) and the covariance of P; and P; is
M M
Cov(P, Py) =Y Cov(X{) X)) = —Mpp; (29)
f=1g=1

because Cov(Xj(f),Xg(j)) = —p;p; if i = j and 0 otherwise.
Since the probabilities p; are unknown, the estimates p; =
P;/M are used instead. This of course presupposes counting
the number of hits in a particular partition. The estimated
variance according to Eq. (28) becomes

e
Var(Ih(a A R)) (

@l\’)

Mx-

R
12

Sy Y

i=1 j=i+1

(30)

aza]

PP)

The normal approximation with the mean and variance just
derived can now be used to give the confidence interval for a
particular estimate, i.e.,

I}’f(a,A,R) c f}]f(a,A,R) +2p,.,/2 Var( F(a, A R))
(31)
where zg denotes the [-percentile of a standard normal
distribution and p.,.. the probability of error.



1) Ranking and Selection: In order to use the confidence
interval of Equation 31 for adaptive sampling, we will distin-
guish three situations—depending on how the fitness estimates
f,’f(a, A, R) of a population A are used:

o The individual of A with the smallest value needs to be
identified for removal: This occurs when applying the
iterative greedy strategy for environmental selection.
The subset A’ of A compromising the % individuals
with the smallest fitness values should be determined for
removal: This occurs when applying the one-shot greedy
strategy for environmental selection.

The population members ¢ € A should be ranked
according to their I} (a, A, R) values: This is the case
when using rank-based mating selection, e.g., tournament
selection.

In all three scenarios, one is interested in the probability that
the selection and ranking respectively is done correctly, i.e.,
corresponds to the one that would result when using the exact
values I} (a, A, R). This probability is derived in the following
which then can be used as a stopping criterion for the sampling
process.

Consider first the simple case of deciding between the
estimate of two individuals a,b € A whether either is
smaller. Let the indicator values be vy := IF(a, A, R) and
vy := If(b, A, R) and their estimates be 0, := I[F(a, A, R)
and 0y := IF(b,A,R) with 5, < 0, hence individual a
is selected. Furthermore, let 6 := v; — vy denote difference
between the indicator values and 6 := 01 — U9 the difference
between the estimates. By examining the distribution of ¢
given 4, the probability of correct selection C'), corresponds
to the probability P(5 < 0[4).

The difference ¢ is approximately normally distributed
around ©; — 0o due to the same arguments used above.
Since the same samples are used to estimate v; and v, the
corresponding estimates are not independent—the variance
of the difference is Var(6) ~ o2 + 02, — 204, 04,05, ,0,-
The first two summands can be determined according to
(30), the correlation p is more difficult to determine as it
can vary greatly as Fig. 13 reveals. The correlation can be
estimated iteratively, but this implies updating p for all pairs
of individuals after each sample drawn. For two reasons this is
impractical: Firstly, keeping track of all correlations requires a
lot of memory and processing time compared to the sampling
process itself and will significantly slow down the estimation
process; secondly, the exact error probability is not crucial,
and an approximation of it or a lower bound is adequate for
the intended applications.

Therefore, we propose using an upper bound for the correct
probability, based solely on the variance of the estimates. If
the exact value vy is smaller than a value B and vs is bigger
than B, then clearly v; < vo. We can therefore give a lower

~
~

20

400
350 1
300
250
200 |
150 |
100 r

50 1

frequency

0.2 0.4 0.6 0.8
correlation

-04 -0.2 0

Figure 13. Correlation between fitness estimates of different individuals of
a given Pareto-set approximation introduced in Table II. The closer to points
are, the higher the correlation between their estimates becomes. Contrariwise,
the estimates can be negatively correlated for points which lie far apart.
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Figure 14.  Shows the confidence interval for a comparison between two

randomly selected individuals of a Pareto set approximation as in Table II.
The solid line shows the exact confidence interval calculated based on
the correlation information. The dashed course represents the lower bound
according to (33).

bound for ordering the two individuals correctly by

P(Ul < U2|1A)1 < ’02) > P(Ul < B|@1) . P(Ug > B|v1 < B,@Q)

(32)

where B = (1 + 92) /2. (32) in turn can be lower bounded,
which finally leads to

P(’Ul < U2|1A11 < @2) >1- P(Ul > B|@1) — P(UQ < Bl@g)
(33)

In (33) all probabilities involved are pairwise independent
and hence can be determined using the normal distribution
with the variance given in Eq. (30). Figure B1 shows the
estimated confidence according to (33) in comparison to the
exact confidence level.

After these general considerations, we can now provide
specific lower bounds for the three situations mentioned above.
a) Selecting the Worst Individual: There exist many
procedures in the field of ranking and selection [31]. However,
they often assume that the estimates are independent or at
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Figure 15. Shows the threshold for values for the three cases discussed in
Section B1: When selecting the worst point, the threshold is determined by
its estimated variance (left illustration); when the s worst points need to be
selected (middle) or the points have to be ranked, then the threshold value(s)
lie halfway between two estimates.

least that their correlation matrix has special properties like
sphericity. Unfortunately, these assumptions are not met in
our case. Moreover, determining the necesarry correlations
between estimates slows down the sampling process consid-
erably.

We therefore propose to use a rough lower bound for the
confidence C',. Though it is a quite conservative bound, the
sampling speed is in a much minor degree affected compared
to tighter approximations which consider the correlation. The
idea is again to determine a threshold to which the estimates
are compared.

Let v; = I}f(ai,A,R) denote the indicator values for
different individuals a; € A with 1 < i < |A] and ¥,
the sampled estimates thereof. Let 07 < 09+ < f|A|. The
confidence C,, of correctly selecting the worst individuals is
PNAL v > 011, ..., Bya)-

Left hand side of Figure 15 illustrates the procedure to
determine a lower bound for C,,. Firstly, we calculate the
confidence interval of the worst estimate v, according to (31)
at the level (L + 1)/2, where L denotes the user defined
confidence level for the selection problem. Let the threshold
B then be the upper endpoint of this interval. Hence, v, will
be smaller than B approximately with probability (L + 1)/2
given 0.

For the remaining estimates ©; with ¢ > 1 we then compute
the probability P(v; > BJ9;), that their exact value v, is
bigger than the threshold B by using once again the normal
approximation (shown as arrows in Fig. 15). Clearly, the
bigger v;, the bigger the probability becomes.

Based on L and P(v; > B|v;,i > 2), the probability
of obtaining a correct selection outcome is then calculated
analogically to (32) (all following probabilities are under
the condition of known ©;, which is omitted to facilitate
readability):

21

[A]
Cw=P|[[)vi>n (34)
=2
> P(v1 < B)-P(vg>Blvyy < B)--- (35)
[A]—1
Ploa =Bl <B, ()| vi>B (36)
=2
which in turn can be lower bounded by
| Al
Cw>1-(1-L)/2=> P(v; > B) (37)
=2

In the latter approximation, all factors P(v; > B) can be
determined using the normal approximation and the variance
derived in (28), not involving any correlation between different
estimates.

b) Selecting the s Worst Individuals: Let again o1 <
Dy < --- < 04 denote the estimates of v; = I}:(a;, A, R),
with a; € A. In this section we consider the problem of not
only removing the worst point, but the set A,, = {ai,...,as}
of those s individuals with the worst estimated indicator
values. On this problem, the confidence C'; shall be determined
that the set A, corresponds to the set A, resulting form
ranking the individuals according to the exact indicator values

v;. Hence, Cj is equal to the probability P(A,, = A.).

The middle part of Figure 15 illustrates how a lower bound
for the probability can be obtained. This time, the threshold
B is set to lie between the best estimate still to be removed v
and the worst estimate which remains in the set ©,,1. Hence,
B = (0541 + 05)/2. A lower bound for the confidence of
correctly selecting the set A,, is obtained by multiplying the
probabilities, that v; is smaller than B for all individuals of
A,, and bigger than B for all a; € A\A,:

Cs = P.(A, = Ay) (38)
s 1—1
>[I P (v < BI v < B): (39)
i=1 j=1
|A| s i—1
I1 P(vi>B|ﬂvj<B,ﬂvk>B) (40)
i=s+1 j=1 k=1
which can be further simplified by the lower bounded
s |A|
zl—ZP(vi>B)— Z P(v; < B) (41)
i=1 i=s5+1

¢) Ranking Individuals: Given a ranking of estimated in-
dicator values 01 < 9y - -+ < 14|, Where 9; := f,’f(ai, A, R) as
before. We are interested in finding the confidence C',, that this
ranking represents the ranking of the exact values v;. To this
end, we introduce multiple thresholds B; with 1 <14 < |A|—1
between each pair v; and v;4, of consecutive estimates (see
right hand side of Figure 15). Hence, B; = (0; + 0;41)/2.



Using B, a lower bound is

Cr=PNMi<j: v <vj) (42)
|A|—1

> P(v1 < B1) [[ (P(vi > B;)-P(vi < Biy1)) (43)
i=2

'P(U‘A‘ >B|A|_1) (44)

which is again lower bounded by

lA]-1 |4
>1-— Z P(v; < B;) — ZP(Ui > B 1) (45)
i=1 1=2
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Table V: Comparison of HypE to different MOEASs with respect to the
hypervolume indicator. The first number represents the performance
score P, which stands for the number of participants significantly
dominating the selected algorithm. The number in brackets denote the
hypervolume value, normalized to the minimum and maximum value
observed on the test problem.

| Problem SHV IBEA  NSGA-II RS SPEA2 HypE  HypE*
DTLZ 1 3 0286 0667 2 (0441) 30306 30343 1 (0545 3 (0.279)
DTLZ 2 2 0438 0 (0871) 5 (0.306) 50278 2 ©431 10682 4 (0362
DTLZ 3 6 (02655 0 (0.759) 1 ©o59) 30452 10578 3 (0454) 2 (0.483)
DTLZ 4 1 0848) 0 (0.928) 3 (0732 30834 2©79 1 @779 3 (0.711)
DTLZ 5 2 0489 0931y 5361 60279 20463 107249 4 (0428
DTLZ 6 2 06700 0 (091499 50326 4 (0388 6 (0229 1 (085) 2 (0.659

@ DTLZ 7 0 (0945 1 (0.898) 6 (0.739) 2 (0818 4 (0817) 2 (0853) 1 (0.876)
2 Knapsack 2 (0523 0 (0631) 0 (0603 3 (0493 0 (0574 0 (0633 0 (0.630)
'_E—J‘ WFG 1 4 0567) 0 (0.949) 1©792 60160 1 ©776) 2 (0744) 4 (0557
o | WFG 2 197 4©09%2 30974 60702 40969 0 @©0990) 0 (0989
N | WFG 3 2 0994 0©97 4@©099) 6©059 4090 00997 2 (099
WFG 4 0 (0964 0099 4 ©891) 603149 4 ©089% 0098 0 (0963
WFG 5 3094 0@©97) 5092 6 @042 2 ©095 0098 2 (09%)
WFG 6 2 095 09759 40932 60418 4 0930) 1095 2 (0942
WFG 7 30929 0©98 1@ 60204 2099 10947 4 (0920
WFG 8 30431 0©675 1@©5% 30367 10514 0 @683 1 (0549
WFG 9 10920 0@©999) 4 @©s91) 6 @©313 4 @088 10924 0 (093
DTLZ 1 3 (0313) 1 (0505) 6 0168) 0 (0607) 5 (02759 1 (0395 3 (0.336)
DTLZ 2 2 (0995 09w 50683 60491 40888 1 (09%) 3 (0.9%)
DTLZ 3 302100 1495 3 ©179 0 (679 3 (0216) 2 (0398 3 (0.196)
DTLZ 4 1 ©o45) 0989 37777 307749 2080 0987 2 (0922
DTLZ 5 1 0991 0 (0.999 5 (0.69) 6 (03749 4 (0882 2 (099%) 3 (0.989)
DTLZ 6 2 ©0.971) 0 (0.990) 6 (0.151) 50237 4 ©026 0091 3 (09%7)

@ DTLZ 7 0 ©993 1@©97 60633 4@©07949 50722 30970 2 (0.980)
2 Knapsack 2 (0441 0 (054499 1 (0462 6 (0322 1 (0441) 0 (0550 0 (0473
% WFG 1 4 07920 3 (0811) 3087 6 @027 1@os1 0@ 1 (08%)
o WEFG 2 0 (0556) 3 (04750 3 (0406) 6 (0.261) 2 (0441) 0 (0446) 0 (0372
© WFG 3 2 (0995 30981 4096 60689 4096 0099 1 (0.99%)
WFG 4 0 (09789 3 (095 5078 60220 4 ©0740) 1 (0975 0 (0.979
WFG 5 2 0988 3092 4©84 60343 50877 0091 0 (0991)
WFG 6 2 (0959 20955 40914 60415 50879 00987 1 (0981
WFG 7 1 ©os 3090 507700 60183 4 (0858 0 (0988 2 (0.958)
WFG 8 2087 0@©0922 4 @082 6 @©301 5 @780 00906 3 (0870
WFG 9 1©o4 30914 50735 60283 4 @076 0 @©972 1 (0956

continued on next page
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continued from previous page

| Problem SHV IBEA  NSGA-II RS SPEA2 HypE  HypE*
DTLZ 1 2 (0927) 3 (0.905) 5 (0.831) 6 (05489 4 (0869) 0 (0968) 1 (0.961)
DTLZ 2 1@©99) 0099 40808 6034 5 @795 2098 3 (0.9%)
DTLZ 3 2 07549 1 (0.786) 6 (0.365) 4 (052990 4 05200 0 (0824) 1 (0.768)
DTLZ 4 1@©97 0 @©9%8 40749 5055 6057 2 (0992 2 (0.992)
DTLZ 5 0 (0997 0 (0998) 4 (0.859) 6 (0403) 5 (0841) 2 (09%) 2 (0.995)
DTLZ 6 3 (0964 1 (0979 5 (0.428) 6 0311) 4 0597 0 (0988 1 (0.977)

@ DTLZ 7 0 (0983 0 (0.986) 6 (04789 4 (0672) 5 (0569) 2 (0868 2 (0.862)
2 Knapsack 0 (o676) 0 (08620 2 (0.163) 2 (0235 1 (0369) 2 (0.242) 2 (0.256)
% WFG 1 4 ©76) 5 (0703 20832 60201 20820 00973 1 (0951
o WEFG 2 0 671y 00533 06449 6351 006290 0 (0557 3 (0503
ol WFG 3 6 (0339 0 @©9799 3096 50760 40932 009777 0 (0971
WFG 4 0 (0965) 30894 5 @711y 60241 4 0741 1 (0948 1 (0.949
WFG 5 5074 1©0971) 4©08%2 60303 3@©911) 0 @978y 1 (0975
WFG 6 0 093 0949 40913 60392 50872 1098 2 (0940
WFG 7 0 ©921y 182 207749 60157 4 ©745 2 (0784 5 (0.700)
WFG 8 0 (08477 0 (0856) 4 (0685) 6 (0.309) 5 (0588 2 (0825 3 (0.809)
WFG 9 5 (4%) 2 07200 4 645y 6 (0138 3 0667) 0 (0937) 0 (0.956)
DTLZ 1 2 (0962 2090 50950 60563 20961 0 ©095 0 (099%5)
DTLZ 2 3 098 0 ooy 5808 60340 4 (080 10999 1 (0.999)
DTLZ 3 1 0951y 1 (0.958) 5 (0.589) 6 0438 4 0723 00973 1 (0952
DTLZ 4 1 ©999) 0 (ooo) 4 (0.902) 6 (0569) 5 (0814) 2 (0999) 2 (0.999)
DTLZ 5 1@©997 0 @©997 408 6052 4 ©089 0 @©0997) 10997
DTLZ 6 309549 2@093) 5063 60397 40756 0093 1 (0988

Q DTLZ 7 0 91 1@©98 50348 40559 50352 20877 2 (0.870)
2 Knapsack 0 (07455 0 (0768) 2 (02355 2 (0.226) 2 (0272) 2 (0276) 4 (0.212)
'_E—J‘ WFG 1 4 0647y 5 (0649 2 (0814 6 (0189) 2 (0812) 0 (0956 1 (0.937)
[} WEFG 2 0 (06320 0 (0.747) 1 ©a9 50155 0 ©837) 0 (0528 0 (0630
™~ | WFG 3 6 (0105) 2 (0975 3 (091 50709 4 (098 00983 0 (0982
WFG 4 3 (0888 20919 4688 6 (0200 40694 096 0 (0952
WFG 5 6 (0042) 2 (0982 4 (0905 54060 30938 0 (0986 0 (0.987)
WFG 6 0 (09789 0 (097 4 0940 6 (453 50921y 0 (09749 3 (0.967)
WFG 7 1 ©ess)y 3657 00813 60207 3065 10713 5 (0.606)
WFG 8 0 0933 1095 4 @709 60366 50537 2083 2 (0.874)
WFG 9 50385 2 ©0681) 30679 60119 3 0683) 00928 0 (0943
DTLZ 1 30981 5 ©971) 4 (0.986) 6 (0590 2 ©09%) 0 (0999 0 (0.999
DTLZ 2 3 (0999) 2 (1.000) 5 (0.825) 6 (02000 4 (0868) 0 (1.000) 0O (1.000)
DTLZ 3 30951 1@©90) 50676 60358 40750 00994 1 (0.990)
DTLZ 4 2 (1o00) 0 (rooo) 4 (0988 6 (0560) 5 (0960 1 (1000) O (1.000)
DTLZ 5 3 (091 00998 4 (0.89%) 6 0471 4 0892 0 (0998 1 (0.997)
DTLZ 6 4 (0497 2 (0987) 4 (0.706) 6 0276) 3 (0769) 0 (0994) 1 (0.992)

§ DTLZ 7 0 (0986) 1 (0831 4 (0.137) 6 (0057) 4 (0166) 2 (0744) 1 (0.781)
5 | Knapsack 0 se 0 (0529 2019 4019 20173 5 (0068 5 (0.060)
-_°Q—’. WFG 1 6 04020 4 (0843 20932 50562 2097 0977 0 (0975
g WEFG 2 0 o971y 098 0978y 5002 2092 0©9m81) 1 (0966
— WFG 3 6 (0os8) 10973 30947 50792 40933 0090 1 (0976
WFG 4 3 (069 2 08%) 3078 60207 50669 0090 0 (0955
WFG 5 6 0014 20979 40832 5035 30913 0097 0 (0989
WFG 6 3094 1 @099 4©8%w 6049 50865 00959 1 (0949
WFG 7 1 ©oess) 4 (0464 1 (0604 6 (0077) 4 0473 0 (0683 3 (0548
WFG 8 0 (0956) 1 (0903 4 (0689 6 (0221) 5 (0438 2 (0883) 2 (0.875)
WFG 9 50222 3058 306449 6109 2 0676 1 (0893) 0 (0.925

continued on next page
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continued from previous page

| Problem SHV IBEA  NSGA-II RS SPEA2 HypE  HypE*
DTLZ 1 4 (0994) 5 (0.987) 2 (1.000) 6 (06577 30998 0 (1000) 0O (1.000)
DTLZ 2 30999 2 @oo0) 4095 60301 5082 0 @oo O (1000
DTLZ 3 3 09%7 2099 409930) 6045 50827 0 @099 0 (1000
DTLZ 4 3 (@ooo) 2 (1oo0) 4 (1ooo) 6 (05460 5 (0991) 0 (1.oo0) O (1.000)
DTLZ 5 5071 2 09%) 3 (0.949) 6 (04577 4 (0808) 0 (0999) 1 (0.999)
DTLZ 6 6 (0.286) 2 (0993) 3 (0.957) 50412 4 ©830) 0099 0 (0.99%)
B DTLZ 7 0 (0973) 0 (096) 3 (0.856) 2 (0893) 4 (0671 2 (0889 3 (0.825)
>
ks Knapsack 0 (0ooo) 4 (0ooo) 50000 3 (0000 6 (0ooo) 1 (0ooo) 2 (0.000)
-_°Q—’. WFG 1 6 0183 4090 0 @971y 50815 3095 0 @972 0 (0973
S WEFG 2 0 (0951 0 (0951) 20935 6 (072 2 (0933 2 (0934) 2 (0.928)
N WFG 3 6 0037y 00983 3095 5 @078 30963 10974 1 (0977
WFG 4 6 (0063) 2 (08%0) 3 (0541 51700 4 (0432 0 (0941 0 (0.945)
WFG 5 6 0003) 3082 407 5027 2 @095 0©09msy) 0 (0989
WFG 6 3092 0@©959 5093 60579 30902 0 @091 00962
WFG 7 3 ©286) 40183 2 (0386 6 (0081 4 185 0 (0707 1 (0479
WFG 8 0 (09249 0 (0909 4 5177 6189 50305 2 (0817) 3 (0.792)
WFG 9 50118 3 @©531) 3©50 50133 2 ©0681) 00893 1 (0849
DTLZ 1 4 0992 5095 2 @00 60566 3099 1 oo O (1000
DTLZ 2 3 @ooo) 2 (1ooo) 499 60375 5 ©0917) 0 ooo O (1000)
DTLZ 3 3 (0984 2 (1.000) 3 (0.988) 6 (0518 5 0891y 0 (1000) O (1.000)
DTLZ 4 2 (1.000) 2 (1.000) 4 (1.000) 6 0517 5 ©0999) 0 (1000) 0O (1.000)
DTLZ 5 504777 2 ©9%) 3094 50425 40752 0 @099 0 (0.999)
DTLZ 6 6 01120 2 (0995 30979 50399 4 0839 0098 1 (099%)
§ DTLZ 7 1767 0 @6 50233 40254 6 (020 2 (0684 3 (0675
5 Knapsack 0 (0.oo0) 4 (0o00) 5 (0000 3 (0000 6 (0o00) 1 (00000 2 (0.000)
-_“Q—’. WFG 1 6 (02100 4 (0869) 2 (092 4 (0823 2 091 0 (0971 0 (0.970)
g WEFG 2 305 0@©9%2 0@y 6 ©orey 00952 2 (0945 3 (0943
v | WFG 3 6 0059) 0981 20972 5@©731 20973 0 ©976) 0 (0979
WFG 4 6 0o11) 2 ©783) 3028 50118 3028 0094 1 (0908
WFG 5 6 (0003) 2 (0940) 4 (0789) 5 (04169 3 (0913) 1 (0987) 0 (0.989)
WFG 6 4 0933) 2093 4091 60663 2091 0 @979 0 (0976)
WFG 7 1©312 5 @©026) 3028 5002 40034 O0@©ss1) 10378
WFG 8 1 ©0669) 00913 40341y 601477 50233 10602 2 (0579
WFG 9 50250 3597 30559 6 (©0166) 2 (0727 0 0907 0 (0.903)
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