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Abstract

Most problems encountered in practice involve the optimization of multiple
criteria. Usually, some of them are conflicting such that no single solution
is simultaneously optimal with respect to all criteria, but instead many in-
comparable compromise solutions exist. At the same time, the search space
of such problems is often very large and complex, so that traditional opti-
mization techniques are not applicable or cannot solve the problem within
reasonable time.

In recent years, evidence has accumulated showing that Evolutionary Algo-
rithms (EAs) are effective means of finding good approximate solutions to
such problems. Apart from being applicable to complex problems, EAs
offer the additional advantage of finding multiple compromise solutions in a
single run. One of the crucial parts of EAs consists of repeatedly selecting
suitable solutions. The aim thereby is to improve the current set of solutions
by cleverly replacing old solutions by newly generated ones. In this process,
the two key issues are as follows: first, a solution that is better than another
solution in all objectives should be preferred over the latter. Second, the
diversity of solutions should be supported, whereby often user preference
dictates what constitutes a good diversity.

The hypervolume offers one possibility to achieve the two aspects; for this
reason, it has been gaining increasing importance in recent years as selection
criterion in EAs. The present thesis investigates three central topics of the
hypervolume that are still unsolved:

• Although more and more EAs use the hypervolume as selection crite-
rion, the resulting distribution of points favored by the hypervolume has
scarcely been investigated so far. Many studies only speculate about this
question, and in parts contradict one another.

• The computational load of the hypervolume calculation sharply increases
the more criteria are considered. This hindered so far the application of
the hypervolume to problems with more than about five criteria.

• Often a crucial aspect is to maximize the robustness of solutions, which is
characterized by how far the properties of a solution can degenerate when
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implemented in practice—for instance when manufacturing imprecisions
do not allow to build perfectly the solution. So far, no attempt has
been made to consider robustness of solutions within hypervolume-based
search.

First, the present thesis examines how hypervolume-based search can be
formalized, by proposing a new perspective on EAs which emphasizes the
importance of sets rather than single solutions. Different factors are stated
that need to be considered when selecting and comparing sets of solutions.
In this context, a new algorithm based on this formalism is proposed. A
visual comparison illustrates the different outcomes with respect to the un-
derlying set selection method; these differences are confirmed by a new
statistical procedure.

This observation leads to a rigorous mathematical investigation of the set of
solutions, obtained when optimizing according to the hypervolume. A con-
cise description of the distribution of solutions in terms of a density function
not only allows to predict the outcome of hypervolume-based methods, but
also enables to implement precisely user preference within the hypervolume
itself.

While the foundation to articulate user preference by means of hypervol-
ume had already be laid by previous works, no study so far considered the
integration of robustness issues in hypervolume-based search. The present
thesis closes this gap by extending the definition of the hypervolume to also
enabling the consideration of robustness properties.

Finally, to make the hypervolume applicable to problems with many criteria
a new algorithm is proposed based on a fast approximation of the hyper-
volume values. Thereby, importance is attached to maintain the possibility
for user preference articulation, as well as the consideration or robustness
issues.



Zusammenfassung

In der Praxis auftretende Optimierungsprobleme beinhalten oft mehrere
Kriterien, die berücksichtigt werden müssen. Diese Kriterien stehen dabei
meist in Konflikt zueinander, so dass bei deren gleichzeitigen Betrachtung
keine einzelne optimale Lösung resultiert, sondern mehrere Kompromiss-
lösungen. Gleichzeitig ist der Suchraum der Probleme häufig so gross und
komplex, dass deterministische Algorithmen das Problem nicht mehr in ver-
tretbarer Zeit lösen können.

Evolutionäre Algorithmen (EAs) sind, wie sich gezeigt hat, eine leistungs-
starke Technik zur approximativen Lösung solcher Probleme. Nebst dem
Vorteil, dass EAs auch auf komplexe Probleme angewandt werden können
wo klassische Verfahren versagen, liegt ein Vorteil darin, dass sie mehrere
verschiedene Kompromisslösungen in einem Optimierungslauf finden. Eine
der Hauptpunkte eines EAs liegt dabei in der wiederholten Auswahl geeig-
neter Lösungen, d.h. die Entscheidung, welche von neu generierten Lösun-
gen am meisten zur Verbesserung der momentanen Auswahl an Lösungen
beitragen. Dabei gilt es zwei Ziele zu berücksichtigen: Einerseits soll ei-
ne Lösung, die in allen Kriterien besser ist als eine andere Lösung, dieser
vorgezogen werden. Andererseits soll die Diversität an Lösungen möglichst
gewahrt werden, wobei häufig Anwenderpräferenzen einzubeziehen sind.

Das Hypervolumen bietet eine Möglichkeit, die zwei Kriterien zu berücksich-
tigen, weshalb es in den letzten Jahren vermehrt als Auswahlkriterium in
EAs eingesetzt wird. Die vorliegende Arbeit untersucht drei zentrale, noch
weitestgehend ungelöste Aspekte der Hypervolumen-basierten Suche:

• Obwohl das Hypervolumen als Selektionskriterium immer mehr an Be-
deutung gewinnt, wurde bisher noch kaum theoretisch untersucht, welche
Verteilung an Lösungen das Hypervolumen bevorzugt. Zu dieser Frage
existieren bisher nur, sich zu teil widersprechende, Vermutungen.

• Der Berechnungsaufwand des Hypervolumens steigt sehr stark an, je
mehr Kriterien betrachtet werden. Dies verhinderte bisher seinen Einsatz
auf Problemen mit mehr als ungefähr fünf Kriterien.



xiv Zusammenfassung

• Oft ist die Robustheit einer Lösungen entscheidend; das heisst, wie stark
sich die Eigenschaften der Lösung in der Praxis verschlechtern können,
zum Beispiel wenn sie nicht präzise hergestellt werden kann. Bisher wur-
de die Berücksichtigung von Robustheit innerhalb der Hypervolumen-
basierten Suche nicht angegangen.

Zunächst untersucht die vorliegende Arbeit, wie sich die Hypervolumen-ba-
sierte Suche formalisieren lässt. Dabei wird eine neue Sicht auf EAs gegeben,
bei der nicht einzelne Lösungen, sondern die Menge derer im Vordergrund
steht. Es werden Kriterien aufgestellt, die bei der Auswahl und beim Ver-
gleich von Mengen zu berücksichtigen sind. In diesem Kontext wird ein Algo-
rithmus vorgestellt, der gemäss dieser Vergleichsfunktionen optimiert. Wie
ein visueller Vergleich zeigt, sind die erhaltenen Mengen an Kompromiss-
lösungen abhängig von der zugrundeliegenden Bewertungsfunktion stark
unterschiedlich, dies wird durch eine neue statistische Vergleichsmethodik
bestätigt.

Diese Beobachtung führt anschliessend zu einer rigorosen Untersuchung der
Menge, welche die beste Bewertung bezüglich des Hypervolumen erhält.
Die genaue Beschreibung dieser Menge als Dichtefunktion erlaubt es dabei
nicht nur, das Resultat von Hypervolumen-basierten Verfahren vorauszusa-
gen, sondern hilft auch, beliebige Präferenzen des Entscheidungsträgers im
Hypervolumen umzusetzen.

Während die Artikulation von Anwenderpräferenzen mittels Hypervolumen
ein bekanntes Verfahren darstellt, wurde bisher die Berücksichtigung von
Robustheit in der Hypervolumen-basierten Suche nicht angegangen. Die vor-
liegende Arbeit schliesst diese Lücke und erweitert die Definition des Hyper-
volumens dahingehend, dass auch Robustheitseigenschaften von Lösungen
einfliessen können.

Um schliesslich den Indikator auch für Probleme mit vielen Kriterien an-
wendbar zu machen, wird ein neuer Algorithmus vorgestellt, welcher auf
einer schnellen Approximation der Hypervolumenwerte basiert. Dabei kann
der Algorithmus gleichfalls für Präferenzartikulation als auch die Berück-
sichtigung von Robustheit verwendet werden.
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
Introduction

Most optimization problems encountered in practice involve multiple criteria
that need to be considered. These so-called objectives are thereby mostly
conflicting. The decision on a laptop purchase, for instance, amongst other
things, maybe influenced by battery life, performance, portability, and the
price. No single solution is usually simultaneously optimal with respect
to all these objectives, but rather many different designs exist which are
incomparable per se.

Such problems often occur in practice when dealing with the analysis and
optimization of problems. The number of potential solutions, constituting
the so-called search space, is thereby often very large, such that computer-
based algorithms are the method of choice. Mimicking the principles of
biological evolution, Evolutionary Algorithms (EAs) are one of those meth-
ods that have been successfully applied to different types of problems. A
concept that has becoming increasingly popular in recent years within EAs
is the hypervolume indicator, the preeminent theme of this thesis.

In the following, an informal introduction to the hypervolume indicator is
given. The chapter is intended to provide a basic understanding of the
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indicator, its properties, and the research questions this thesis approaches.
Mathematical notations are thereby consciously avoided; the reader is re-
ferred to Chapter  for a formal presentation of the hypervolume indicator.

This chapter is organized as follows. First, an introductory example is given
by means of a decision making problem concerning the task of selecting
the best among multiple solutions. This example introduces multiobjective
optimization, and serves to illustrate the concept of hypervolume, its prop-
erties, and advantages. Thereafter, a brief introduction to Multiobjective
Evolutionary Algorithms (MOEAs) is given, and an overview of hypervol-
ume-based research is presented. Finally, the main open research questions
tackled in the present thesis are stated, and an outline of the key aspects
and contributions is provided.

. · Introductory Example

Almost every day we are confronted with decision making problems, where
one has to select the best among several alternatives. As an introduc-
tory example, consider the task of selecting a device to write text, either
electronically or mechanically. Table . on page  lists eight devices the
decision maker can choose from, along with the pictograms used in this
chapter to refer to the devices. The following considerations do not tackle
the task of finding or generating the solutions, but rather it is assumed
that the search space consists of only the eight solutions listed in Table ..
The example first illustrates multiobjective problems, and their differences
to single-objective ones. Next, the task of selecting the best solution(s) is
approached, and in this context the hypervolume indicator is introduced.

.. ·Multiobjective Problems

First, assume that the only criterion is to select the most portable solution,
determined by the reciprocal value of the weight, in other words, lighter
devices are preferred. As long as this is the only criterion, it is always clear
which one of two gadgets is preferred, namely the lighter, more portable one.
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the preference of the decision maker is usually employed. For instance, the
user might be only interested in portable solutions, then she is better of with
set L. In our example, however, a large diversity of solutions is desired,
to meet the demand of stationary high performance computing, and the
mobility requirements when working on the way. Hence, in our setting it
makes more sense to buy the greater variety of solutions constituting set
M . This second criterion of choosing solutions, the user preference, is often
much harder to formalize than Pareto dominance.

.. ·The Hypervolume Indicator

In the present example, the decision maker can consider all potential sets
of solutions and decide herself, which set is the best. However, as already
mentioned, in reality the number of potential solutions is often very large,
such that a human would be overstrained selecting solutions, or at the very
least would need to dedicate to much time to this task. Furthermore, when
it comes to optimization of solutions (see Section .), selection decisions
often have to be made repeatedly for a period of time ranging up to hours
or even days. Hence, the question arises how preference as illustrated in the
previous section could be formalized.

One approach is to use so-called quality indicator functions. These assign
a value to each set representing the worthiness of the set for the decision
maker. Comparing two sets then boils down to relate the indicator val-
ues—whichever set reaches a larger indicator value is preferred. The main
challenge with regards to constructing quality indicator functions is to make
them incorporate the two criteria stated in Section ..: first and foremost,
the indicator should reflect the dominance relation between sets, so when-
ever a set A dominates a second set B, then the indicator value of the former
is larger than of the second. Second, for two incomparable sets the indicator
should prefer the set according to the user’s preference, e.g., favor the more
diverse set.

One quality indicator that has been gaining a lot of interest in recent years is
the hypervolume indicator. It measures the area dominated by the Pareto-
optimal solutions; for example, in Figures . and ., the hypervolume
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corresponds to the gray area. As desired, the hypervolume of set M in
Figure . on page  is larger than the one of K. This holds in general, i.e.,
the hypervolume reflects the dominance of sets. Although determining the
dominance relation between sets is straightforward, constructing indicator
function reflecting the dominance is not. In fact, the hypervolume indicator
is the only known indicator that has this unique property. This is one
of the main reasons for the popularity of the hypervolume indicator. But
the hypervolume not only reflects dominance, but also promotes diverse
sets. Consider for example set L, which has a smaller hypervolume than
set M . The hypervolume indicator hence unifies the two criteria dominance
and diversity as desired in our example. However, the hypervolume is not
restricted to this type of preference. As will be shown in Chapter , it can
also be changed to that effect, that set L (Figure .(a)) is favored over set
M , while still being compliant with dominance, i.e., preferring set M over
K.

. ·Multiobjective Evolutionary Algorithms

As yet it has been established how one type of preference on sets can be
expressed by using the hypervolume indicator, where the indicator has been
applied to a decision making example to illustrate the concept. However,
significant differences exist between the problems considered in this thesis,
and the previous example: first off, the solutions the decision maker can
choose from are not given in advance, but rather need to be generated first.
Thereby, a vast number of potential solutions might be Pareto optimal,
such that even the fastest computer systems usually can not check all solu-
tions to determine the Pareto-optimal ones. Additionally, since the objective
functions, i.e., the function assigning the objective values (portability and
performance in the example) is usually very complex or not known, classical
optimization approaches fail to determine the optimal solutions, or take too
much time.

Multiobjective Evolutionary Algorithms (MOEAs) are one class of search
method that can be applied to these types of problems. In the last decades
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Figure . Evolutionary algo-
rithm cycle illustrated by the
example of computer devices.
First, two solutions are randomly
generated. By exchanging the
display, the crossover operator
then generates two new devices.
These new solutions are then
changed slightly in the process of
mutation. Finally, environmental
selection choses the best two
solutions among the original
two solutions, and the offspring
generated by crossover and
mutation. This process then
starts over with step  and
continues until the set of devices
is satisfactory.
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they have been shown to be well-suited for those problems in practice [,
]. By mimicking processes found in biological evolution, they approximate
the Pareto-optimal set. Hence, instead of guaranteeing to find the Pareto-
optimal solutions, they aim finding solutions that come as close as possible
to the optimal solutions. An actual example of an MOEA is presented in
Appendix E. on page . Here, again the example of electronic devices
to illustrate the concept of MOEAs. Assume that each device consists of a
display and a computing part.

The first step of the MOEA is to randomly generate an initial set of solu-
tions, e.g., by assembling electronic parts given in advance. Of course, the
algorithm needs rules to assure functional designs are generated. Such rules
could for example state that every device needs a case, a processor, a main
board, memory, etc. By analogy with natural evolution, the solutions are
called individuals and the set of all devices is called population. The indi-
viduals are then modified by means of two mechanisms inspired by real evo-
lution: crossover and mutation. The crossing over first selects two solutions
from the population that represent the parents. By exchanging parts of the
parents, two offspring solutions are generated. In our example, the display
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of the parents is swapped. Mutation, on the other hand, operates on single
offspring solutions by making random modifications to change the solutions.
All offspring, together with the original parent population, are then rated for
fitness, i.e., the mobility and writing comfort are determined. Based on the
objective values, the best devices among the parent and offspring individuals
are selected by so-called environmental selection. The resulting individuals
form the new population, which again undergoes crossover, mutation, and
environmental selection. This concludes one generation of the MOEA. The
process continues until the set of devices satisfies the user’s need or until
the maximum number of generations gmax is reached, see Figure . on the
previous page.

Besides not needing any knowledge about the objective functions MOEAs
have the major advantage of generating multiple solutions in one run, in
contrast to many other approaches, most notably algorithms that aggregate
the objective values into one value, such that as in the single-objective case
only one solutions is optimal, see [, ]. This has the advantage, that
the decision maker can be provided with multiple alternative he can choose
from. Moreover, the decision maker does not need to give information, e.g.,
how to aggregate the objective functions, which requires some knowledge of
the underlying problem.

The main focus in this thesis is the environmental selection step, i.e., the
task of selecting the most promising set of solutions based on their objective
values. This problem is analogous to the decision making problem stated
in Section ..: given a set of solutions, a subset has to be selected that
is preferred over all other feasible subsets, and which is better than the
previous set. Consider for example the eight devices shown in Figure .,
and assume four devices need to be selected. Environmental selection then
consists of comparing all

(8
4

)
= 70 subsets with four devices, and choosing

the one which is preferred over all others. Existing MOEAs often differ
in the way, selection works. Many approaches thereby use a combination
of Pareto-dominance and diversity to assess the value of an individual, for
instance the Nondominated Sorting Genetic Algorithm II (NSGA-II) []
or the modified Strength Pareto Evolutionary Algorithm (SPEA) [].
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The hypervolume indicator was originally proposed and employed in [,
] to quantitatively compare the outcomes of different MOEAs. In these
two first publications, the indicator was denoted as ‘size of the space cov-
ered’, and later also other terms such as ‘hyperarea metric’ [], ‘S-metric’
[], ‘hypervolume indicator’ [], and ‘hypervolume measure’ [] were
used. Besides the names, there are also different definitions available, based
on polytopes [], the Lebesgue measure [, , ], or the attainment
function [].

As to hypervolume calculation, the first algorithms [, ] operated recur-
sively and in each recursion step the number of objectives was decremented;
the underlying principle is known as ‘hypervolume by slicing objectives’ ap-
proach []. While the method used in [, ] was never published (only
the source code is publicly available []), Knowles independently proposed
and described a similar method in []. A few years later, this approach
was the first time studied systematically and heuristics to accelerate the
computation were proposed in []. All these algorithms have a worst-
case runtime complexity that is exponential in the number of objectives d,
more specifically O(Nd−1) where N is the number of solutions considered
[, ]. A different approach was presented by Fleischer [] who mis-
takenly claimed a polynomial worst-case runtime complexity—While []
showed that it is exponential in d as well. Recently, advanced algorithms
for hypervolume calculation have been proposed, a dimension-sweep method
[] with a worst-case runtime complexity of O(Nd−2 logN), and a special-
ized algorithm related to the Klee measure problem [] the runtime of
which is in the worst case of order O(N logN + Nd/2). Furthermore, Yang
and Ding [] described an algorithm for which they claim a worst-case
runtime complexity of O((d/2)N ). The fact that there is no exact poly-
nomial algorithm available gave rise to the hypothesis that this problem in
general is hard to solve, although the tightest known lower bound is of order
Ω(N logN) []. New results substantiate this hypothesis: Bringmann and
Friedrich [] have proven that the problem of computing the hypervolume
is #P -complete, i.e., it is expected that no polynomial algorithm exists since
this would imply NP = P .
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The complexity of the hypervolume calculation in terms of programming
and computation time may explain why this measure was seldom used until
. However, this changed with the advent of theoretical studies that
provided evidence for a unique property of this indicator [, , ]: it is
the only indicator known to be strictly monotonic with respect to Pareto
dominance and thereby guaranteeing that the Pareto-optimal front achieves
the maximum hypervolume possible, while any worse set will be assigned
a worse indicator value. This property is especially desirable with many-
objective problems and since classical MOEAs have been shown to have
difficulties in such scenarios [], a trend can be observed in the literature
to directly use the hypervolume indicator for search.

Knowles and Corne [, ] were the first to propose the integration of
the hypervolume indicator into the optimization process. In particular,
they described a strategy to maintain a separate, bounded archive of non-
dominated solutions based on the hypervolume indicator. Huband et al. []
presented an MOEA which includes a modified SPEA environmental selec-
tion procedure where a hypervolume-related measure replaces the original
density estimation technique. In [], the binary hypervolume indicator
was used to compare individuals and to assign corresponding fitness values
within a general indicator-based evolutionary algorithm (IBEA). The first
MOEA tailored specifically to the hypervolume indicator was described in
[]; it combines non-dominated sorting with the hypervolume indicator
and considers one offspring per generation (steady state). Similar fitness
assignment strategies were later adopted in [, ], and also other search
algorithms were proposed where the hypervolume indicator is partially used
for search guidance [, ]. Moreover, specific aspects like hypervolume-
based environmental selection [], cf. Section .., and explicit gradient
determination for hypervolume landscapes [] have been investigated re-
cently.
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. · Research Questions

To date, the hypervolume indicator is one of the most popular set quality
measures. For instance, almost one fourth of the papers published in the
proceedings of the EMO  conference [] report on the use of or are
dedicated to the hypervolume indicator. However, there are still many open
research questions, some of which the present thesis tackles.

.. ·The Hypervolume Indicator as Set Preference Relation

As illustrated in the previous sections, the objective of hypervolume-based
MOEAs is to find a set of compromise solutions, ideally a subset of the
Pareto-optimal set, that maximizes the hypervolume. That means, these
algorithms are focusing on sets rather than single solutions. So far, no formal
description of this perspective on multiobjective problems has been given.
Furthermore, while relations on solutions are well established, no general
procedure to construct set preference relations, using indicator functions or
by other means, exists. Given such preference relations on sets, algorithms
need to be proposed to optimize according to these relations.

Secondly, using for instance the hypervolume indicator as the underlying se-
lection criterion, the question whether the final set of solutions significantly
differs from using other set preferences has to be investigated and assessed
by statistical methods.

.. ·Characterizing the Set Maximizing the Hypervolume

Although more and more MOEAs use the hypervolume as underlying set
preference, the question, which subset of fixed size reaches the largest hyp-
ervolume value is still unsolved. Knowles and Corne [] for instance state:
“(…) sets which are local optima of [the hypervolume] seem to be ‘well dis-
tributed’. Unfortunately, at present we have found no way to quantify ‘well
distributedness’ in this context, so this observation is not provable.” In other
words, the bias of the hypervolume needs to be investigated.
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Figure . Illustration of different research questions: (a) what is the bias of the hypervolume
indicator, and how can it be changed; (b) how can the hypervolume be approximated to make
it applicable to problems with many objectives; (c) how can robustness issues be incorporated
into hypervolume.

Interestingly, several contradicting beliefs about this bias have been reported
in the literature. Zitzler and Thiele [] for instance stated that, when
optimizing the hypervolume in maximization problems, “convex regions may
be preferred to concave regions”, which has been also stated by Lizarraga-
Lizarraga et al. [] later on, whereas Deb et al. [] argued that “(…) the
hyper-volume measure is biased towards the boundary solutions”. Beume
et al. [], claim among other things that the hypervolume focuses on knee
points rather than on the extremes.

In the light of this contradicting statements, a thorough characterization
of the optimal distributions for the hypervolume indicator is necessary, see
Figure .(a). Especially for the weighted hypervolume indicator, the bias
of the indicator and the influence of the weight function in particular has
not been fully understood.

.. ·Considering Robustness Within Hypervolume-Based Search

So far, the hypervolume indicator has been calculated with respect to de-
terministic, and fixed objective values. However, the objective values of a
solution when put into practice might fluctuate within certain ranges due
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to different perturbations. The battery life of a laptop, for example, cer-
tainly depends on different changing conditions, like the workload, or the
temperature. In Figure .(c), the objective values of two laptops are shown
as theoretically predicted, and for different samples taken in reality.

While the foundation to articulate user preference by means of the weighted
hypervolume had already been laid by previous works, no study so far con-
sidered the integration of robustness issues in hypervolume-based search.
The question is, how uncertain objective values can be considered by the
hypervolume indicator. Thereby, the hypervolume should be able to re-
produce traditional approaches, like to consider robustness as an additional
constraint [, , , ] or objective [, , , ], but also to offer new
possibilities.

.. · Fast Hypervolume-Based Many-Objective Optimization

While the hypervolume indicator is easy to calculate for two objectives only,
the dominated area takes more and more complex forms as the number of
objectives increases. Figure .(b), for instance, shows the dominated area
for eight solutions with three objectives. It has been shown recently, that no
algorithm exists calculating the hypervolume whose running time is polyno-
mial with the number of objectives and number of points. In other words,
calculating the hypervolume measure for many objectives is computation-
ally highly demanding. This has so far prevented the application of existing
hypervolume-based algorithms, e.g. [, , , , ], to these cases.

In order to make the hypervolume indicator applicable to problems with
many objectives, a fast approximation scheme has to be derived. Thereby,
the potential of incorporating user preference (by the weighted hypervol-
ume), and considering robustness issues (by the yet to be developed gener-
alization of the hypervolume definition) should be maintained.
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. · Contributions and Overview

The aforementioned four research complexes define the framework of the
present thesis.

First, Chapter  is concerned with the concept of preference relations on
sets, and formalizes them with respect to algorithm design. A general way
of separating the formulation of preference and the algorithm design is pro-
posed. This results in a high flexibility, allowing the user to focus only on the
design of set preference relations, and not having to deal with the algorithm
optimizing this preference. As will be demonstrated, the preference relation
thereby should fulfill certain properties, where ways are shown to gener-
ate such preferences. Furthermore, a framework is proposed to use these
preferences on sets for statistical performance assessment. This method-
ology is then applied to investigate the differences between different kinds
of user preferences. Overall, the proposed methodology unifies preference
articulation, algorithm design, and performance assessment, and thereby
presents a new perspective on Evolutionary Multiobjective Optimization
(EMO), which is used throughout this thesis. Secondly, it is investigated
how multiple sets can be optimized simultaneously, and whether this is
advantageous over traditional approaches.

In Chapter  the focus is then on the bias of the hypervolume indicator. The
chapter is primarily concerned with distributions of µ points maximizing the
hypervolume. In other words, the set that is preferred over all other sets of
size µ and therefore represents the optimum is characterized. The concept
of density of points is thereafter introduced, that allows to assess the bias of
the hypervolume indicator in a concise way. The second major contribution
of Chapter  investigates the choice of the reference point with respect to
obtaining the two extreme solutions in the optimal µ-distribution. It is
shown that for some Pareto-front shapes, the extremes are never included,
regardless of the choice of the reference point. For the remaining cases, a
lower bound is given that guarantees to always reach the extreme solutions.
These contributions are based on the papers [–].
Loosely based on parts of Bader et al. [].
This chapter is based on [, ] and a paper currently (as of February ) under review by a journal.
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Chapter  addresses the application of the hypervolume indicator to many
objective problems. First, some preliminary consideration are presented
on how to use Monte-Carlo sampling to approximate the hypervolume.
Second, an advanced sampling strategy called Hypervolume Estimation Al-
gorithm for Multiobjective Optimization (HypE) is proposed. It entails
an advanced fitness assignment scheme, that enhances sampling accuracy,
and that can be applied to both mating and environmental selection. By
adjusting the number of samples, accuracy can thereby be traded-off ver-
sus the overall computing time budget. The new algorithm HypE makes
hypervolume-based search possible also for many-objective problems.

Next, in Chapter  ways to incorporate two types of user preference into
hypervolume-based search are shown, using the principle of the weighted
hypervolume concept by Zitzler et al. []. In particular, weight functions
are proposed to stress extreme solutions, and to define preferred regions of
the objective space in terms of so-called preference points. Both weight func-
tions thereby allow to draw samples in a sophisticated way within HypE.

Finally, Chapter  proposes ways to consider robustness in hypervolume-
based search. First, three existing approaches are translated to hypervol-
ume, i.e., (i) modifying the objective values [, , , , , , , ],
(ii) considering one or more additional objectives [, , , , , ], (iii)
using at least one additional constraint [, , , ].

Secondly, a generalization of the hypervolume indicator is proposed that
allows to realize different trade-offs between robustness and quality of so-
lutions, including the three aforementioned approaches. To make the gen-
eralized robustness-aware indicator applicable to problems involving many
objectives, HypE is extended to the new definition of the hypervolume in-
dicator.

Altogether, Chapters  to  provide a versatile algorithm HypE, that not
only allows to apply the hypervolume indicator to many objective problems,
Building on the work in [].
The main part of Chapter  is based on work published in [–].
The entire Chapter  is based on a conference paper [].
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but thereby also enables to incorporate different kinds of user preference,
as well as to consider robustness issues.






Set-Based Multiobjective
Optimization

Most Multiobjective Evolutionary Algorithms (MOEAs) proposed in litera-
ture are designed towards approximating the set of Pareto-optimal solutions.
For instance, the first book on Evolutionary Multiobjective Optimization
(EMO) by Deb [] is mainly devoted to techniques of finding multiple
trade-off solutions using evolutionary algorithms. As outlined in Chapter 
in contrast to single-objective optimizers that look for a single optimal so-
lution, these algorithms aim at identifying a set of optimal compromise
solutions, i.e., they actually operate on a set problem.

This chapter introduces the set-based perspective on multiobjective opti-
mization and the notation used throughout this thesis. In detail, first the
problem of expressing and formalizing set preferences on the basis of in-
dicators is approached, as already touched in the introductory example in
Section . on page  and following. Then, ways to optimize according to
a given relation are proposed; finally, it is demonstrated how to compare
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the obtained sets with respect to the underlying preference. The considera-
tions to these questions demonstrate, why in recent year search algorithms
based on indicators, in particular the hypervolume indicator, have become
increasingly popular.

. ·Motivation

EMO in general deals with set problems: the search space Ψ consists of all
potential Pareto set approximations rather than single solutions, i.e., Ψ is
a set of sets. When applying an Evolutionary Algorithm (EA) to the prob-
lem of approximating the Pareto-optimal set, the population itself can be
regarded as the current Pareto set approximation. The subsequent applica-
tion of mating selection, variation, and environmental selection heuristically
produces a new Pareto set approximation that—in the ideal case—is better
than the previous one. In the light of the underlying set problem, the
population represents a single element of the search space which is in each
iteration replaced by another element of the search space. Consequently, se-
lection and variation can be regarded as a mutation operator on populations
resp. sets.

Somewhat simplified, one may say that a classical MOEA used to approxi-
mate the Pareto-optimal set is a (1, 1)-strategy on a set problem:

Definition . ((µ +, λ) EA): A (µ +, λ)-EA selects in each generation µ parent
individuals, which generate λ offspring individuals by means of crossover
and mutation. For the variant (µ, λ)-EA, the best µ of the λ offspring
individuals are chosen as new population, hence λ ≥ µ is required. On the
other hand, for the (µ + λ)-EA, the µ best of the µ + λ individuals of the
union of the parent and the offspring population constitute the population of
the next generation.

Furthermore, MOEAs are usually not preference-free. The main advantage
of generating methods such as MOEAs is that the objectives do not need to
be aggregated or ranked a priori; but nevertheless preference information is
required to guide the search, although it is usually weaker and less stringent.
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In the environmental selection step, for instance, a MOEA has to choose a
subset of individuals from the parents and the offspring which constitutes
the next Pareto set approximation, see also Section ... To this end, the
algorithm needs to know the criteria according to which the subset should be
selected, in particular when all parents and children are incomparable, i.e.,
mutually non-dominating. That means the generation of a new population
usually relies on set preference information.

These observations led to the concept presented in this chapter which sep-
arates preference information and search method. Firstly, preference infor-
mation is regarded as an appropriate order on Ψ required to fully specify the
set problem—this order will here be denoted as set preference relation. A set
preference relation provides the information on the basis of which the search
is carried out; for any two Pareto set approximations, it says whether one
set is better or not. Secondly, a general, extended (1+1)-strategy SPAM is
proposed for this set problem which is only based on pairwise comparisons of
sets in order to guide the search. The approach is then extended to a general
(µ +, λ strategy SPAM+ using a population of solutions sets in combination
with appropriate set selection and set variation operators. Both algorithms
are fully independent of the set preference relation used and thus decoupled
from the user preferences.

This complete separation of concerns is the novelty of the suggested ap-
proach. It builds upon the idea presented in Zitzler and Künzli [], but is
more general�as it is not restricted to a single binary quality indicator�and
possess in addition desirable convergence properties. Furthermore, there are
various studies that focus on the issue of preference articulation in EMO,
in particular integrating additional preferences such as priorities, goals, and
reference points [, , , , , , ]. However, these studies mainly
cover preferences on solutions and not preferences on sets, and the search
procedures used are based on hard-coded preferences. Moreover, in recent
years a trend can be observed to directly use specific measures such as
the hypervolume indicator and the epsilon indicator in the search process
[, , , , , , , , ]. Nevertheless, a general methodology to
formalize set preferences and to use them for optimization is missing.
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In the light of this discussion, three core research issues can be identified: (i)
how to formalize the optimization goal in the sense of specifying what type
of set is sought, (ii) how to effectively search for a suitable set to achieve
the formalized optimization goal, and (iii) how to evaluate the outcomes of
multiobjective optimizers with respect to the underlying set problem.

This chapter represents one step towards such an overarching methodology.
It proposes

. a theory of set preference relations that clarifies how user preferences
on Pareto set approximations can be formalized on the basis of quality
indicators and what criteria such formalizations must fulfill; introduces

. a general set-preference based hillclimber that can be flexibly adapted
to arbitrary types of set preference relations; proposes

. an extension of the hillclimber to using multiple sets, i.e., an extension
to a general (µ +, λ) EA optimizing sets; and discusses

. an approach to statistically compare the outcomes of multiple search
algorithms with respect to a specific set preference relation.

The novelty of this approach is that it brings all aspects of preference ar-
ticulation, multiobjective search, and performance assessment under one
roof, while achieving a clear separation of concerns. This offers several
benefits: (i) it provides flexibility to the decision maker as he can change
his preferences without the need to modify the search algorithm, (ii) the
search can be better guided which is particularly important in the context of
high-dimensional objective spaces, (iii) algorithms designed to meet specific
preferences can be compared on a fair basis since the optimization goal can
be explicitly formulated in terms of the underlying set preference relation.

In the following, first the formal basis of set preference relations is provided,
and fundamental concepts are introduced. Afterwards, set preference rela-
tions are discussed, and how to design them using quality indicators also
giving some example relations. A general, set preference based multiobjec-
tive search algorithm will be proposed in Section .., and an extension of
the algorithm in Section ... Finally, Section . presents a methodology
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to compare algorithms with respect to a given set preference relation and
provides experimental results for selected preferences.

. · A New Perspective: Set Preference Relations

As described in the motivation, multiobjective optimization will be viewed
as a preference-based optimization on sets. The purpose of this section is to
formally define the notation of optimization and optimality in this context,
and to provide the necessary foundations for the practical algorithms de-
scribed in the forthcoming sections. The List of Symbols and Abbreviations
on page xix serves as a reference for the nomenclature introduced in the
following.

.. ·Basic Terms

Throughout this thesis the optimization of d objective functions fi : X → Z,
1 ≤ i ≤ d is considered where all fi are, without loss of generality, to be
minimized. Here, X denotes the feasible set of solutions in the decision
space, i.e. the set of alternatives of the decision problem. A single alternative
x ∈ X is denoted as a decision vector or solution. The vector function
f := (f1, . . . , fd) maps each solution x = (x1, . . . , xn) in the decision space
X to its corresponding objective vector z = f(x) in the objective space
Z ⊆ Rd, i.e., Z = f(X) = {y ∈ Rd | ∃x ∈ X : y = f(x)}. Without loss of
generality, in this thesis the objectives are to be minimized. For reasons of
simplicity, the decision space is assumed to be finite. Nevertheless, almost
all results described in the chapter hold for infinite sets also or can be
generalized. Figure . illustrates a possible scenario with  solutions in the
decision space and a two-dimensional objective space (d = 2).

In order to allow for optimization in such a situation, a preference relation
a ≼ b on the feasible set in the decision space is needed, which states that a
solution a is at least as good as a solution b. The assumption is commonly
Note, that in contrast to Chapter , a ≼ b means a is at least as good as b and not vice versa, as in this chapter and
following minimization problems are considered
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Figure . Representation of a preordered set (X, ≼) where
X consists of the solutions {a, ..., m}. The optimal solutions are
Min(X,≼) = {c, g, l, m}. {i, j} and {l, m} form two equivalence
classes, i.e. i ≡ j and l ≡ m. l is incomparable to m, on the
other hand, c is strictly preferred over b; as b ̸≼ c and c ≼ b,
one finds c ≺ b.
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In the special case of the underlying preference relation 5 being weak Pareto
dominance ≼par, the set of minimal elements is also termed Pareto set:

Definition . (Pareto-optimal set): The Pareto-optimal set (or Pareto set for
short) of the decision space X corresponds to the set of minimal elements of
(X,≼par), i.e., the Pareto set consists of all elements in u ∈ X, for which
no x ∈ X exists with x ≺par u.

The image of the Pareto-set under the objective functions f = (f1, . . . , fd)

is called Pareto(-optimal) front:

Definition . (Pareto-optimal front): The Pareto-optimal front (or Pareto
front for short) for a decision space X corresponds to the objective values
of the Pareto set—which corresponds to the minimal set of (Z,6par).

Example .: Consider Figure . with Pareto dominance as preference rela-
tion. Then for solution j the following holds: j ≡par i (hence also j ≼par i,
i ≼par j), j qpar g, j ≼par f , and m ≼par j, l ≼par j, k ≼par j. The
Pareto-optimal set is {m, l, g}. ◦

Preference relations can also be depicted graphically. Figure . shows
a possible preordered set of solutions X = {a, ..., m}. In particular, the
preferences among {f, g, i, k, l, m} correspond directly to the scenario shown
in Figure ..
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Figure . Representation of a preordered set of sets of so-
lutions {A, B, G} ∈ ψ where≼par is assumed to be the underly-
ing solution-based preference relation. One finds B 4 A, G 4
A and B q G, i.e., B and G are incomparable. 1f

2f A
B
G

.. ·Approximation Of The Pareto-Optimal Set

As a preference relation ≼ defined above is usually not a total order on the
feasible set, often many optimal solutions are obtained, i.e., many minimal
elements that reflect the different trade-offs among the objective functions.

In particular, this holds for the Pareto preference relation ≼par. As a result,
one may not only be interested in one of these minimal elements but in
a carefully selected subset that reflects additional preference information
of some decision maker. Traditional EMO methods attempt to solve this
problem by maintaining and improving sets of decision vectors, denoted as
populations, see upper half in Figure . on page . The corresponding
optimization algorithms are tuned to anticipated preferences of a decision
maker.

Thus, the underlying goal of set-based multiobjective optimization can be
described as determining a (small-sized) set of alternative solutions

. that contains as many different decision vectors as possible that are
minimal with respect to a preference relation on the feasible set in the
decision space (for example the weak Pareto-dominance according to
Definition .), and

. whose selection of minimal and non-minimal decision vectors reflects the
preferences of the decision maker.

As pointed out in Section ., it is the purpose of this chapter to define
set-based multiobjective optimization on the basis of these two aspects. In
contrast to previous results, the second item as defined above is made formal
A binary relation 5 on a set S is called total, if (a 5 b) ∨ (b 5 a) holds for all a, b ∈ S.
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and treated as a first class citizen in optimization theory and algorithms.
This not only leads to a better understanding of classical population-based
multiobjective optimization but also allows for defining set-based methods
with corresponding convergence results as well as statistical tests to compare
different algorithms. Finally, a new set of optimization algorithms can be
obtained which can directly take preference information into account.

Therefore, the preferences of a decision maker on the subset of decision
vectors needs to be formalized in an optimal set of solutions. This will be
done by defining a preorder 4 on the set of all possible sets of solutions. A
set of solutions P is defined as a set of decision vectors, i.e. P ⊆ X. A set
of all admissible sets, e.g. sets of finite size, is denoted as Ψ, i.e., P ∈ Ψ.

Definition . (set-based multiobjective optimization): Set-based multiobjec-
tive optimization is defined as finding a minimal element of the ordered set
(Ψ,4) where Ψ is a set of admissible sets of solutions.

The elements of a set-based multiobjective optimization problem can be
summarized as follows: A set of feasible solutions X, a vector-valued objec-
tive function f : X → Rd, a set Ψ of all admissible sets P of decision vectors
with P ⊆ X, and a preference relation 4 on Ψ.

In the light of the above discussion, the preference relation 4 needs to
satisfy the aforementioned two conditions, whereas the first one guarantees
that the objective functions are optimized actually, and the second one
allows to add preferences of the decision maker. In the next section, the
necessary properties of suitable preference relations are discussed, along
with the concept of refinement.

.. ·Preference Relations

The preference on sets 4 is constructed in two successive steps. At first, a
general set-based preference relation (a set preference relation) 4 ⊆ Ψ×Ψ

will be defined that is conforming to a solution-based preference relation
≼ ⊆ X × X. This set preference relation will then be refined by adding
preferences of a decision maker in order to possibly obtain a total order.
For a conforming set preference relation no solution may be excluded that
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could be interesting to a decision maker. In addition, if for each solution
b ∈ B there is some solution a ∈ A which is at least as good, then A is
considered at least as good as, or weakly preferable to B.

From the above considerations, the definition of a conforming set-based
preference relation follows directly; it is in accordance to the formulations
used in [, ].

Definition .: Let be given a set X and a set Ψ whose elements are subsets
of X, i.e., sets of solutions. Then the preference relation 4 on Ψ conforms
to ≼ on X if for all A, B ∈ Ψ

A 4 B ⇔ (∀b ∈ B : (∃a ∈ A : a ≼ b))

As an example, Figure . shows three sets of solutions A, B and G. Ac-
cording to the above definition, B 4par A and G 4par A. As sets B and G

are incomparable, it holds B qpar G.

The above preference relation is indeed suitable for optimization, as it is a
preorder, see accompanying paper by the author and colleagues [].

.. ·Refinements

The set preference relation 4 according to Definition . has the disadvan-
tage of often being sparse, i.e., for many sets A and B it is not clear, which
one is preferred. This is because in order to have A 4 B, for all elements
b ∈ B there must exist an element in A being preferred over b. Hence, the
question arises how the set preference 4 can be refined, such that for more,
ideally all, pairs A and B it is clear which set is preferred. Thereby, the
original relation 4 needs to be taken into account, i.e., if A ≺ B holds, it
must also hold under the refined relation.

The goal of such a refinement is twofold: At first, the given preorder should
become “more total”. This way, there are less incomparable sets of solutions
which are hard to deal with by any optimization method. Second, the
refinement will allow to explicitly take into account preference information
of a decision maker. Hence, by refining set relations, preference information
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Figure . Including preference in-
formationmay create a total preorder
that can be used for optimization. On
the lest, three preferences F4 A, B4
G and H 4 C have been added to a
preorder. On the other hand, cycles in
the optimization can result as shown
on the right, where two preferences
A 4 F and F 4 B have been added.
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of a decision maker can be included, and optimized towards a set which
contains a preferred subset of all minimal solutions, i.e., non-dominated
solutions in the case of Pareto-dominance.

An example is shown in Figure . on the left, where three edges (preference
relations) have been added and the resulting ordering is a total preorder with
the optimal set of solutions H. Just adding an ordering among incomparable
solutions potentially leads to cycles in the ordering as the resulting structure
is no longer a preorder. Using such an approach in optimization will prevent
convergence in general, see also right half of Figure ..

Hence, for the refinement the following properties are required:

• The refinement should again be a preorder.
• If a set is minimal in the refined order for some subset of Ψ, it should

also be minimal in the original order in the same subset. This way,
it is guaranteed that the objective functions are optimized indeed with
respect to some preference relation, e.g. Pareto-dominance.

As a result of this discussion the following definition is obtained:

Definition .: Given a set Ψ. Then the preference relation 4ref refines 4
if for all A, B ∈ Ψ

(A 4 B) ∧ (B ̸4 A)⇒ (A 4ref B) ∧ (B ̸4ref A)

All legal refinements are depicted in Figure .(a). Note, that the refinement
still needs to be a preorder.
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ref

(a) refinement

ref

(b) weak refinement

Figure . The top in both plots shows the four different possibilities between two nodes
of the given preference relation: no edge (incomparable), single edge (one is better than
the other) and double edge (equivalent). The bottom shows the probabilities in case of the
refined relation (a), and the weakly refined relation (b). The dashed edges represent all possible
changes of edges if 4 is (weakly) refined to 4ref.

Using the notion of strictly better, the following condition can be derived
A ≺ B ⇒ A ≺ref B. In other words, if in the given preference relation a set
A is strictly better than a set B (A ≺ B) then it must be strictly better in
the refined relation, too (A ≺ref B). As can be seen, refining a preference
relation maintains existing strict preference relationships. If two sets are
incomparable, i.e., A q B ⇔ (A ̸4 B) ∧ (B ̸4 A), then additional edges can
be inserted by the refinement. In case of equivalence, i.e., A ≡ B ⇔ (A 4
B) ∧ (B 4 A), edges can be removed.

Some of the widely used preference relations are not refinements in the sense
of Definition ., but satisfy a weaker condition:

Definition .: Given a set Ψ. Then the set preference relation 4ref weakly
refines 4 if for all A, B ∈ Ψ the following holds

(A 4 B) ∧ (B ̸4 A)⇒ (A 4ref B) .

In other words, if set A is strictly better than B (A ≺ B), then A weakly
dominates B in the refined preference relation, i.e. A 4ref B. Therefore, A

could be incomparable to B in the refined preference relation, i.e. A qref B.
In addition, if a preference relation refines another one, it also weakly refines
it. Figure .(b) depicts all possibilities of a weak refinement. The weak
refinement still needs to be a preorder.
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The following hierarchical construction of refinement relations allows to con-
vert a given weak refinement into a refinement. This way, a larger class of
available indicators and preference relations can be used. In addition, it
provides a simple method to add decision maker preference information to
a given relation by adding an order to equivalent sets, thereby making a
preorder ‘more total’. Finally, it enables to refine a given preorder in a way
that helps to speed up the convergence of an optimization algorithm, e.g. by
taking into account also solutions that are worse than others in a set. This
way, the successful technique of non-dominated sorting can be used in the
context of set-based optimization. The construction resembles the concept
of hierarchy used in []; however, here (a) preference relations on sets are
considered, and (b) the hierarchical construction is different.

Definition .: Given a set Ψ and a sequence S of k preference relations over
Ψ with S = (41,42, . . . ,4k), the preference relation 4S associated with S

is defined as follows. Let A, B ∈ Ψ; then A 4S B if and only if ∃1 ≤ i ≤ k

such that the following two conditions are satisfied:

(i). (i < k ∧ (A ≺i B)) ∨ (i = k ∧ (A 4k B))

(ii). ∀1 ≤ j < i : (A 4j B ∧ B 4j A)

With this definition, the following procedure can be derived to determine
A 4S B for two sets A and B:

• Start from the first preference relation, i.e. j = 1. Repeat the following
step: If A ≡j B holds (A and B are equivalent), then increase j to point
to the next relation in the sequence if it exists.

• If the final j points to the last preference relation (j = k), then set
A 4S B ⇔ A 4k B. Otherwise, set A 4S B ⇔ A ≺k B.

As described above, one of the main reasons to define a sequence of pref-
erence relations is to upgrade a given weak refinement to a refinement. In
addition, it would be desirable to add arbitrary preorders to the sequence S.
As they need not to be refinements of the given order 4, a decision maker
can freely add his preferences this way. The following theorem states the
corresponding results. The proof is provided in Appendix B. on page .
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Figure . Representation of the hierarchical con-
struction of refinements according to Theorem ..

' 1 ' 11 ',, , ,( , , )k k k kS − +

weak 
refinement

preorder

refinement

Theorem .: Given a sequence of preference relations according to Defini-
tion .. Suppose there is a k′ ≤ k such that 4k′ is a refinement of a given
preference relation 4 and all relations 4j, 1 ≤ j < k′ are weak refinements
of 4. Then 4S is a refinement of 4. Furthermore, if all relations 4j,
1 ≤ j < k are preorders, so is 4S; if all relations 4j, 1 ≤ j < k are total
preorders, then 4S is a total preorder.

All set preference relations 4j , k′ < j ≤ k can be arbitrary preorders that
may reflect additional preferences, see also Figure .. Nevertheless, the
resulting preference relation 4S still refines 4. The previously described
hierarchical construction of refinements will be applied in later sections of
the chapter to construct preference relations that are useful for set-based
multiobjective optimization.

. · Design of Preference Relations Using Quality Indicators

This section addresses the task of building set preference relations based
on quality indicator. First, an overview over different types of indicators is
given, including the corresponding set preference relation. Due to its excep-
tional position in this thesis, the hypervolume indicator is thereby presented
in a separate section. Thereafter, it is shown how set partitioning can be
used to further refine the preference relations. The section concludes by
proposing different preference relations based on indicator functions, which
will be used in the experimental validation in Section ...

.. ·Overview Over Quality Indicators

Quality indicators are functions assigning a value to a predefined number
of sets, usually classified according to the number of set the indicator takes
as input.
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Definition . (quality indicators): An m-ary quality indicator I is a function
I : Ψm → R, which maps m sets A1, A2, · · · , Am ∈ Ψ to a real value in R

Unary indicators (taking one input) and binary indicators (a function of
two sets) are of particular interest, while indicators considering more sets
are less common.

Unary Indicators
Unary quality indicators are a possible means to construct set preference
relations that on the one hand are total orders and on the other hand satisfy
the refinement property, cf. Definition .. They represent set quality
measures that map each set A ∈ Ψ to a real number I(A) ∈ R. Given an
indicator I, one can define the corresponding preference relation as

A 4I B := I(A) ≥ I(B) (.)

where larger indicator values stand for higher quality, in other words, A

is as least as good as B if the indicator value of A is not smaller than
the one of B. By construction, the preference relation 4I defined above is
a preorder since it is reflexive as I(A) ≥ I(A) and transitive as (I(A) ≥
I(B)) ∧ (I(B) ≥ I(C)) ⇒ I(A) ≥ I(C). Moreover, it is a total preorder
because (I(A) ≥ I(B)) ∨ (I(B) ≥ I(A)) holds. Note that depending on
the choice of the indicator function, there may be still sets that have equal
indicator values, i.e., they are indifferent with respect to the corresponding
set preference relation 4I. In this case, equivalence classes of sets may
result, each one containing sets with the same indicator value. For multiob-
jective optimization algorithms that use indicators as their means of defining
progress, sets with identical indicator values pose additional difficulties in
terms of cyclic behavior and premature convergence. Later it will be shown
how these problems can be circumvented by considering hierarchies of indi-
cators.

Clearly, not all possible indicator functions realize a refinement of the orginal
preference relation, e.g., weak Pareto-dominance. The following theorem
provides sufficient conditions for weak refinements and refinements.
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Theorem .: If a unary indicator I satisfies

(A 4 B) ∧ (B ̸4 A)⇒ (I(A) ≥ I(B))

for all A, B ∈ Ψ, then the corresponding preference relation 4I according to
Eq. . weakly refines the preference relation 4 according to Definition ..
If it holds that

(A 4 B) ∧ (B ̸4 A)⇒ (I(A) > I(B))

then 4I refines 4 according to Definition ..

Proof. Consider A, B ∈ Ψ with (A 4 B) ∧ (B ̸4 A). If I(A) ≥ I(B), then
also A 4I B according to Eq. .. If I(A) > I(B), then I(A) ≥ I(B), but
I(B) ̸≥ I(A), which implies that A 4I B and B ̸4I A.

In other words, if A is strictly better than B, i.e. A ≺ B, then the indicator
value of A must be not worse or must be larger than the one of B in order
to achieve a weak refinement or a refinement, respectively. In practice,
this global property may be difficult to prove for a specific indicator since
one has to argue over all possible sets. Therefore, the following theorem
provides sufficient and necessary conditions that are only based on the local
behavior, i.e., when adding a single element. The proof of the theorem is
given in Appendix B. on page .

Theorem .: Let I be a unary indicator and 4 a preference relation on
populations that itself conforms to a preference relation ≼ on its elements
(see Definition .). The relation 4I according to Eq. . refines 4 if
the following two conditions hold for all sets A ∈ Ψ and solutions b with
{b} ∈ Ψ:

. If A 4 {b} then I(A ∪ {b}) = I(A).
. If A ̸4 {b} then I(A ∪ {b}) > I(A).

For weak refinement one needs to replace the relation > by ≥ in the second
condition. The second condition is necessary for 4I being a refinement (in
case of >) or weak refinement (in case of ≥) of 4.



.. Design of Preference Relations Using Quality Indicators 

In the past decades numerous unary indicators were proposed, however,
many of them do not satisfy the weak refinement property with respect to
the Pareto dominance relation 4par, as for instance the Generalized Dis-
tance, the Maximum Pareto Front Error, the Overall Nondominated Vector
Generation (all by Van Veldhuizen []) or the Spacing Metric of Schott
[]. Other indicators are a weak refinement of4par, e.g., the Unary Epsilon
Indicator [] and the indicators R1, R2 and R3 by Hansen and Jaszkiewicz
[] when used with preference sets. However, none of these indicators is a
refinement of 4par. So far, the only known indicator with this property has
been the Hypervolume Indicator which will be presented in Section ...

Binary Indicators
In contrast to unary indicators, binary quality indicators assign a real value
to ordered pairs of sets (A, B) with A, B ∈ Ψ. Assuming that larger indi-
cator values stand for higher quality, for each binary indicator I a corre-
sponding set preference relation can be defined as follows:

A 4I B := (I(A, B) ≥ I(B, A))

Similarly to unary undicators, one can derive sufficient conditions for 4I
being a refinement respectively a weak refinement.

Note that the relation 4I is not necessarily a preorder, and this property
needs to be shown for each specific indicator separately. The binary epsilon
indicator [] does not give a preorder, see the paper by the author and
colleagues []. Other examples of binary indicators include the C-metric
by Knowles [] and R1 to R3 by Hansen and Jaszkiewicz []. However, one
can derive valid binary indicators from unary indicators. For example, for
every unary indicator I1 a corresponding binary indicator I2 can be defined
as I2(A, B) := I1(A)− I1(B); it is easy to show that the property of (weak)
refinement transfers from the unary indicator to the binary version. In a
similar way, one could also use I2(A, B) := I1(A∪B)− I1(B) as in the case
of the binary hypervolume indicator, see, e.g., [].
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On the other hand, every binary indicator I2 can be transformed into a
unary indicator I1 by using a reference set R: I1(A) := I2(A, R). Here, the
refinement property is not necessarily preserved, e.g., the unary versions
of the binary epsilon indicators induce only weak refinements, while the
original binary indicators induce refinements of the weak Pareto-dominance
relation.

n-Ary Indicators
The concept of indicators can also be extended to assigning a real value
to arbitrary number of inputs, i.e., assigning a real value to vectors of sets
(A1, . . . , Am). Examples of n-ary indicators include the n-ary Pareto dom-
inanance indicator by Goh and Tan [], and the G-Metric by []. Both
these metrics calculate the indicator value of the first input with respect
to the remaining sets A2 to Am. Defining general set preference relations
from n-ary indicators is not straightforward and depends on the considered
indicator.

.. ·Hypervolume Indicator

All known unary indicator as of February  inducing a refinement of
the weak Pareto-dominance relation are based on the hypervolume indica-
tor IH(A, R) or the weighted hypervolume indicator Iw

H(A, R). The weigh-
ted hypervolume indicator has been proposed by Zitzler et al. []:

Definition . (weighted hypervolume indicator): Let A ∈ Ψ denote a set of
decision vectors, then the weighted hypervolume indicator Iw

H(A) corresponds
to the weighted Lebesgue measure of the set of objective vectors weakly dom-
inated by the solutions in A but not by a so-called reference set R ∈ Z.

Iw
H(A, R) = λw(H(A, R))

where λw denotes the weighted Lebesgue measure, i.e.,

λw(H(A, R)) =

∫
Rd

αA(z)w(z)dz

Usually, instead of a reference set of solutions a reference set of objective vectors is given. This requires a slight
modification of the indicator.
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with αA(z) = H(A,R)(z) where

H(A, R) = {z | ∃a ∈ A ∃r ∈ R : f(a) 6 z 6 r}

and H(A,r)(z) being the characteristic function of H(A, r) that equals 1 iff
z ∈ H(A, r) and 0 otherwise, and w : Rk → R>0 is a strictly positive

weight function integrable on any bounded set, i.e.,
∫

B(0,γ) w(z)dz < ∞ for
any γ > 0, where B(0, γ) is the open ball centered in  and of radius γ. In
other words, the measure associated to w is assumed to be σ-finite.

The definition is based on the original (non-weighted) hypervolume indicator
first proposed by Zitzler and Thiele []:

Definition . (hypervolume indicator): Let A ∈ Ψ denote a set of objec-
tive vectors, then the hypervolume indicator IH(A, R) corresponds to the
Lebesgue measure of the set of objective vectors weakly dominated by the
solutions in A but not by a so-called reference set R ∈ Z.

IH(A, R) =

∫
Rd

αA(z)dz

with H(A, R) and αA(z) according to Definition ..

Throughout the thesis, the notation IH refers to the non-weighted hyper-
volume where the weight is  everywhere, and the term non-weighted hyp-
ervolume is explicitly used for IH while the weighted hypervolume indicator
Iw

H is, for simplicity, referred to as hypervolume. Figure . illustrates the
(weighted) hypervolume Iw

H for a biobjective problem.

It is easy to see that the volume is not affected whenever a weakly Pareto-
dominated solution is added to a set A. Furthermore, any solution b not
weakly Pareto-dominated by A covers a part of the objective space not
covered by A and therefore the indicator value for A∪{b} is better (larger)
than the one for A. These properties can be verified by looking at the
In fact it is enough to have a strictly positive weight almost everywhere such that IwH is a refinement of Pareto
dominance. Since there is no practical use for choosing a non positive weight in null sets, for the sake of simplicity
the weight is assumed to be strictly positive everywhere.

Please note, that the term “hypervolume” is used interchangeably to refer to the indicator value IH and the dominated
space H(A,R)
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Figure . Graphical representa-
tion of the weighted hypervolume
indicator for a set of solutions
A = {a,…,i} and a reference set
R = {r}. The gray shaded area rep-
resents the hypervolume H(A,R),
the volume of the weight function
w(z) over the hypervolume (solid
box) gives the weighted hypervol-
ume indicator IwH (A) = λw(H(A,{r})).
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example shown in Figure .; therefore, the hypervolume indicator induces
a refinement, see also []. There are various other unary indicators which
induce weak refinements, e.g., the unary R2 and R3 indicators [] and the
epsilon indicator []—the above conditions can be used to show this, see
also Knowles and Corne [] and Zitzler et al. [] for a more detailed
discussion.

The necessary condition can be used to prove that a particular indica-
tor—when used alone—does not lead to a weak refinement or a refinement
of the weak Pareto-dominance relation. That applies, for instance, to most
of the diversity indicators proposed in the literature as they do not fulfill
the second condition in Theorem .. Nevertheless, these indicators can be
useful in combination with indicators inducing (weak) refinements as will
be shown in Section ...

.. ·Refinement Through Set Partitioning

The Pareto-dominance relation 4par on sets is by definition insensitive
to dominated solutions in a set, i.e., whether A ∈ Ψ weakly dominates
B ∈ Ψ only depends on the corresponding minimal sets: A 4par B ⇔
Min(A,≼par) 4par Min(B,≼par). The same holds for set preference relations
induced by the hypervolume indicator and other popular quality indicators.
Nevertheless, preferred solutions may be of importance:
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• When a Pareto set approximation is evaluated according to additional
knowledge and preferences—which may be hard to formalize and there-
fore may not be included in the search process—then preferred solutions
can become interesting alternatives for a decision maker.

• When a set preference relation is used within a (evolutionary) multiob-
jective optimizer to guide search, it is crucial that preferred solutions are
taken into account—for reasons of search efficiency.

Accordingly, the question is how to refine a given set preference relation that
only depends on its minimal elements such that also non-minimal solutions
are considered.

This issue is strongly related to fitness assignment in MOEAs. Pareto-
dominance based MOEAs for instance divide the population into dominance
classes which are usually hierarchically organized. The underlying idea can
be generalized to arbitrary set preference relations. To this end, the no-
tion of partitions is introduced: let A denote a set of solutions, then for a
partitioning Pi, 1 ≤ i ≤ l, it holds Pi ∩ Pj = ∅ ∀i ̸= j, and ∪l

i=1 Pi = A.

For instance, with Rank Partitioning (rp) (also called dominance ranking
[]) individuals which are dominated by the same number of population
members are grouped into one dominance class, i.e., into the same partition:

P rp
i := {a ∈ A : |{b ∈ A : b ≺ a}| = i− 1}

see Figure .. With Minimal elements Partitioning (mp) (also called non-
dominated sorting or dominance depth [, ]), the minimal elements are
grouped into the first dominance class, and the other classes are determined
by recursively applying this classification scheme to the remaining popula-
tion members:

P mp
i :=

{
Min(X,≼) if i = 1

Min(X\ ∪i−1
j=1 P mp

i ,≼) else . (.)

For the second partitioning P mp
1 ≺ P mp

2 ≺ . . . ≺ P mp
l holds; this is demon-

strated in Figure ..
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Figure . Illustration of two set partition-
ing functions, here based on weak Pareto-
dominance: mp (lest) and rp (right). The light-
shaded areas stand for the first partition P
and the darkest areas represent the last parti-
tion P (lest) and P (right). On the lest P ≺par
P ≺par P holds, while on the right P ≺par Pi
for ≤ i≤ , P ≺par P , and P qpar P as well
as P qpar P. 1f
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Now, given a set partitioning function ‘part’ giving a partitioning P part
i

(such as rp or mp) one can construct set preference relations that only refer
to specific partitions of two sets A, B ∈ Ψ. By concatenating these relations,
one then obtains a sequence of relations that induces a set preference relation
according to Definition ..

Definition .: Let 4 be a set preference relation and ‘part’ a set partitioning
function where the number of partition is l. The partition-based extension
of 4 is defined as the relation 4part :=4S where S is the sequence (41

part,
42

part, . . . ,4l
part) of preference relations with

A 4i
part B :⇔ P A

i 4 P B
i

where P A
i and P B

i denote the ith partition of set A and B respectively.

A partition-based extension of a set preference relation 4 basically means
that 4 is successively applied to the hierarchy of partitions defined by the
corresponding set partition function. Given A, B ∈ Ψ, first the two first
partitions of A and B are compared based on 4; if the comparison yields
equivalence, then the two second partitions are compared and so forth.
This principle reflects the general fitness assignment strategy used in most
MOEAs.

One important requirement for such a partition-based extension is that4part

refines 4. Provided that 4 only depends on the minimal elements in the
sets, both ‘rp’ and ‘mp’ induce refinements. The argument is simply that
41

part is the same as 4 because the first partition corresponds for both
functions to the set of minimal elements; that means 41

part is a refinement
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of 4. Furthermore, all 4i
part are preorders. Applying Theorem . leads

to the above statement.

Throughout this thesis, the set partitioning function ‘mp’ is considered and
referred to as minimum elements partitioning (or non-dominated sorting in
the case of Pareto-dominance). It induces a natural partitioning into sets
of minimal elements where the partitions are linearly ordered according to
strict preferability.

.. ·Combined Preference Relations

The issue of preferred (dominated) solutions in a set A ∈ Ψ cannot only
be addressed by means of set partitioning functions, but also by using mul-
tiple indicators in sequence. For instance, one could use the hypervolume
indicator IH (to assess the minimal elements in A) in combination with a
diversity indicator ID (to assess the non-minimal elements in A); according
to Theorem ., the set preference relation 4H,D given by the sequence
(4H ,4D) is a proper refinement of weak Pareto-dominance since 4H is a
refinement (see above) and 4D is a preorder.

In the following, some examples are presented for combined set preference
relations that illustrate different application scenarios. All of these relations
are refinements of the set preference relation 4par.

. The first combination is based on the unary epsilon indicator Iε1 with a
reference set R in objective space which is defined as Iε1(A) = E(A, R)

with

E(A, R) = max
r∈R

min
a∈A

max{fi(a)− ri | 1 ≤ i ≤ d}

where ri is the ith component of the objective vector r. Since this in-
dicator induces only a weak refinement of the weak Pareto-dominance
relation 4par, the hypervolume indicator is used to distinguish between
sets indifferent with respect Iε1. The resulting set preference relation is
denoted as 4ε1,H ; it is a refinement of 4par.
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. The second combination uses the R2 indicator proposed in [] for which
the following definition is used here:

IR2(A) = R2(A, R) =

∑
λ∈Λ u∗(λ, R)− u∗(λ, f(A))

|Λ|

where the function u∗ is a utility function based on the weighted Tcheby-
cheff function

u∗(λ, T ) = min
z∈T

max
1≤j≤d

λj |z∗
j − zj |

and Λ is a set of weight vectors λ ∈ Rd, R ⊂ Z is a reference set, and
z∗ ∈ Z is a reference point. In this chapter, the reference set is R = {z∗}.
Also the R2 indicator provides only a weak refinement; as before, the
hypervolume indicator is added in order to achieve a refinement. This
set preference relation will be denoted as 4R2,H .

. The next set preference relation can be regarded as a variation of the
above relation 4R2,H . It allows a detailed modeling of preferences by
means of a set of reference points r(i) ∈ R with individual scaling factors
ρ(i) and individual sets of weight vectors Λ(i). As a starting point, the
generalized epsilon-distance between a solution a ∈ X and a reference
point r ∈ Z is defined as

F λ
ε (a, r) = max

1≤i≤d
λi · (fi(a)− ri)

with the weight vector λ ∈ Rd where λi > 0 for 1 ≤ i ≤ d. In contrast to
the usual epsilon-distance given, the coordinates of the objective space
are weighted which allows for choosing a preference direction.
The P indicator for a single reference point r can now be described as

IP (A, r,Λ) = −
∑
λ∈Λ

min
a∈A

F λ
ε (a, r)

where Λ is a potentially large set of different weight vectors. The mini-
mum operator selects for each weight vector λ the solution a with mini-
mal generalized epsilon-distance. Finally, all these distances are summed
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up. In order to achieve a broad distribution of solutions and a sensitive
indicator, the cardinality of |Λ| should be large, i.e., larger than the ex-
pected number of minimum elements in A. For example, Λ may contain
a large set of random vectors on a unit sphere, i.e., vectors with length
1. One may also scale the weight vectors to different lengths in order to
express the preference for an unequal density of solutions.
If one has a set of reference points r(i) ∈ R with individual sets of weight
vectors Λ(i) and scaling factors ρ(i) > 0, one can simply add the individ-
ual P indicator values as follows

IP (A) =
∑

r(i)∈R

ρ(i) · IP (A, r(i),Λ(i))

Of course, equal sets Λ(i) might be chosen for each reference point. In
this case, the scaling factors ρ(i) can be used to give preference to specific
reference points.
The P indicator as defined above provides only a weak refinement; as be-
fore, the hypervolume indicator is added in order to achieve a refinement.
This set preference relation will be denoted as 4P,H .

. The previous three indicator combinations will be used together with
a set partitioning function. To demonstrate that the partitioning can
also be accomplished by indicators, the following sequence of indicators
S = (IH , IC , ID) is proposed where IC measures the largest distance
of a solution to the closest minimal element in a set and ID reflects the
diversity of the solutions in the objective space. The latter two indicators,
which both do not induce weak refinements of4par, are defined as follows:

IC(A) = −max
a∈A

min
b∈Min(A,≼)

dist(f(a), f(b))

and

ID(A) = −max
a∈A

(
1

nn1(a, A \ {a})
+

1

nn2(a, A \ {a})

)
with

nn1(a, B) = min
b∈B

dist(f(a), f(b))

nn2(a, B) = max
c∈B

min
b∈B\{c}

dist(f(a), f(b))
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where nn1(a, B) gives the smallest and nn2(a, B) the second smallest
distance of a to any solution in B. For the distance function dist(z1, z2),
Euclidean distance is used here, i.e., dist(z1, z2) =

√∑
1≤i≤d(z

1
i − z2i )

2.
The IC indicator resembles the generational distance measure proposed
in [] and ID resembles the nearest neighbor niching mechanism in the
modified Strength Pareto Evolutionary Algorithm (SPEA) []. The
overall set preference relation is referred to as 4H,C,D. According to
Theorem ., 4H,C,D is a refinement of 4par.

It is worth mentioning that it is also possible to combine a non-total preorder
such as 4par with total orders differently to the principle suggested in Defi-
nition .. As has been pointed out, see e.g. right hand side of Figure .,
convergence may not be achievable if an optimization is not based on a
preorder or if the underlying preorder is not a refinement. The following
example illustrates why density-based MOEA such as the Nondominated
Sorting Genetic Algorithm II (NSGA-II) and SPEA show cyclic behavior,
see [], in particular, when the population mainly contains incomparable
solutions, e.g., when being close to the trade-off surface.

For instance, let I be a unary indicator, then one may define a set preference
relation 4par,I as follows with A, B ∈ Ψ:

A 4par,I B :⇔ (A 4par B) ∨ ((A qpar B) ∧ (A 4I B))

Now, consider a unary diversity indicator, e.g., ID as defined above; this
type of indicator usually does not induce a weak refinement. The result-
ing set preference relation 4par,I is not a proper preorder as Figure .
demonstrates: transitivity is violated, i.e., A 4par,I B and B 4par,I C, but
A ̸4par,I C. The relation graph of 4par,I contains cycles. However, if I

stands for the hypervolume indicator IH , then 4par,I is a set preference re-
lation refining 4par; this combination could be useful to reduce computation
effort.
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Figure . Three sets are shown in the objective space
where A 4par B, A qpar C and B qpar C. Using a combination
of Pareto-dominance and diversity results in a cyclic relation
4par,I with A ≺par,I B, B ≺par,I C, and C ≺par,I A. 1f

2f
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. ·Multiobjective Optimization Using Set Preference Relations

The previous two sections discussed how to design set preference relations
so that the concept of Pareto dominance is preserved while different types of
user preferences are included. This section presents corresponding general-
ized multiobjective optimizers that make use of such set preference relations
in order to search for promising solution sets. First, Section .. proposes
an algorithm corresponding to classical EAs, while Section .. extends
the approach to a more general class of optimizers.

In the following, optimizers are classified according to the following defini-
tion:

Definition .: An optimizer that operates on elements of the decision space
U and returns an element of V is referred to as a U/V -optimizer.

Hence, MOEAs are, from a classical EA perspective, X/P(X) optimizer.
On the other hand, multiobjective algorithms using aggregation are consid-
ered as X/X-optimizers. First, in Section .. the Set Preference Algo-
rithm for Multiobjective Optimization (SPAM) is presented which gives a
new perspective on traditional MOEAs interpreting them as P(X)/P(X)

strategies. As SPAM reveals, traditional MOEAs in this light are hill-
climbers, i.e., (+)-strategies, that operate on a single set . Stemming from
this observation, Section .. then presents and extension of SPAM, oper-
ating on multiple sets, i.e., realizing a general (µ, λ) strategy. Finally, Sec-
tion .. discusses the relation of SPAM and SPAM+ to existing MOEAs.
Note, that strictly speaking many MOEAs employ a (,) strategy, i.e., the successor set is chosen no matter whether
the new set is preferred over the old set. Nonetheless, these algorithms are also referred to as hillclimbers.
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.. ·SPAM–Set Preference Algorithm for Multiobjective Optimization

The classical view of MOEAs is illustrated in the upper left corner of Fig-
ure .. Mating selection, mutation, crossover, and environmental selec-
tion operate on single solutions and thereby generate a new—hopefully bet-
ter—set of solutions. Summarized, one can state that classical MOEAs
operate on elements of X and deliver an element of P(X), where P(X)

denotes the power set of X.

In the following, the Set Preference Algorithm for Multiobjective Optimi-
zation (SPAM) is introduced which can be used with any set preference
relation and resembles a standard hill climber with the difference that two
new elements of the search space Ψ are created using two types of mutation
operators. The main part of SPAM is given by Algorithm .

Starting with a randomly chosen set P ∈ Ψ of size α, first a random mu-
tation operator is applied to generate another set P ′. This operator should
be designed such that every element in Ψ could be possibly generated, i.e.,
the neighborhood is in principle the entire search space. In practice, the
operator will usually have little effect on the optimization process; however,
its property of exhaustiveness is important from a theoretical perspective,
in particular to show convergence, see [].

Second, a heuristic mutation operator is employed. This operator mimics
the mating selection, variation, and environmental selection steps as used in
most MOEAs. The goal of this operator is to create a third set P ′′ ∈ Ψ that
is better than P in the context of a predefined set preference relation 4.
However, since it is heuristic it cannot guarantee to improve P ; there may be
situations where it is not able to escape local optima of the landscape of the
underlying set problem. Finally, P is replaced by P ′′, if the latter is weakly
preferable to the former; otherwise, P is either replaced by P ′ (if P ′ 4 P ) or
remains unchanged. Note that in the last step, weak preferability (4) and
not preferability (≺) needs to be considered in order to allow the algorithm
to cross landscape plateaus, cf. Brockhoff et al. [].

For the mutation operators, Algorithms  and  are proposed. Algorithm 
(random set mutation) randomly chooses k decision vectors from X and
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: generate initial set P of size α, i.e., randomly choose A ∈ Ψ=α and set P ← A
: while termination criterion not fulfilled do
: P ′ ← randomSetMutation(P )
: P ′′ ← heuristicSetMutation(P )
: if P ′′ 4 P then
: P ← P ′′

: else if P ′ 4 P then
: P ← P ′

: return P

Algorithm  SPAM Main Loop, given a set preference relation 4

: randomly choose r1, . . . , rk ∈ X with ri ̸= rj

: randomly select p1, . . . , pk from P with pi ̸= pj

: P ′ ← P \ {p1, . . . , pk} ∪ {r1, . . . , rk}
: return P ′

Algorithm  Random Set Mutation of set P

uses them to replace k elements in P . Algorithm  (heuristic set muta-
tion) generalizes the iterative truncation procedures used in NSGA-II [],
SPEA [], and others. First, k new solutions are created based on P ; this
corresponds to mating selection plus variation in a standard MOEA. While
the variation is problem-specific, for mating selection either uniform random
selection (used in the following) or fitness-based selection can be used (using
the fitness values computed by Algorithm ). Then, these k solutions are
added to P , and finally the resulting set of size α+k is iteratively truncated
to size α by removing the solution with the worst fitness values in each step.
Here, the fitness value of a ∈ P reflects the loss in quality for the entire set
P if a is deleted: the lower the fitness, the larger the loss.

To estimate how useful a particular solution a ∈ P is, Algorithm  compares
all sets Ai ⊂ P with |Ai| = |P | − 1 to P \ {a} using the predefined set
preference relation 4. The fewer sets Ai are weakly preferable to P \ {a},
the better the set P \ {a} and the less important is a. This procedure has a
Note that for both mutation operators the same k is used here, although they can be chosen independently. The
safe version (k = α) for the random mutation operator means that a random walk is carried out on ψ.
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: generate r1, . . . , rk ∈ X based on P
: P ′′ ← P ∪ {r1, . . . , rk}
: while |P ′′| > α do
: for all a ∈ P ′′ do
: δa ← fitnessAssignment(a, P”)
: choose p ∈ P ′′ with δp = mina∈P ′′ δa

: P ′′ ← P ′′ \ {p}
: return P ′′

Algorithm  Heuristic Set Mutation of set P

: δa ← 0
: for all b ∈ P ′′ do
: if P ′′ \ {b} 4 P ′′ \ {a} then
: δa ← δa + 1

: return δa

Algorithm  Fitness Assignment given an individual a and population P”

runtime complexity of O((α+k)t), where t stands for the runtime needed to
compute the preference relation comparisons which usually depends on α+k

and the number of objective functions. It can be made faster, when using
unary indicators, see the technical report by the authors and colleagues
[], and Chapter  of this thesis.

.. ·SPAM+–Using Populations of Sets in Multiobjective Optimization

In SPAM, the individual steps (fitness assignment, mating selection, muta-
tion/crossover, and environmental selection) of the MOEA, that lead to a
modified set, are abstracted as a set mutation, see the upper right corner of
Figure .—they are in fact P(X)/P(X)-hillclimbers []. Therefore, the
question arises how a general EA could be constructed where the individuals
represent sets.

In the following, a general P(X)/P(X) evolutionary algorithm is proposed
(Set Preference Algorithm for Multiobjective Optimization using Popula-
tions of Sets (SPAM+)) as it is depicted in the lower half of Figure ., i.e.,
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an algorithm operating on multiple sets of solutions. The question arises,
how the corresponding operators (set mutation, set crossover, set mating
and set environmental selection) can be created and if they are beneficial
for search. To this end, set operators based on the hypervolume indicator are
proposed for illustrative purpose, however, any other set preference relation
can be used.

This section gives first insights on how to use the set-based view provided
by SPAM to propose a general P(X)/P(X) MOEA. It systematically in-
vestigates which extensions are needed and proposes a novel recombination
scheme on sets using the hypervolume indicator as underlying set prefer-
ence. To the author’s knowledge, no study has used the set perspective on
evolutionary algorithms explicitly, but parallel evolutionary algorithms can
be considered as optimizers operating on sets, as discussed in Section ...

Next, a general framework of a P(X)/P(X)-optimizer is presented for multi-
objective optimization the basis of which is a population-based evolutionary
algorithm. In contrast to SPAM, this new optimizer also uses mating se-
lection, recombination, and environmental selection—operators of a usual
EA. Before the different operators on solution sets are presented, a general
framework is described.

A (µ+, λ)-EA as a P(X)/P(X)-Optimizer
Algorithm  shows a general P(X)/ P(X)-optimizer that mainly follows the
scheme of Figure .. The algorithm resembles an island-based MOEA as
will be discussed in Section .. with additional mating and environmen-
tal selection. Mutation, recombination, and selection on single solutions
are considered as mutations on solution sets and the migration operator is
regarded as recombination operator on sets.

The algorithm starts by choosing the first population S of µ sets (of N

solutions each) uniformly at random. Then, the optimization loop produces
new sets until a certain number gmax of generations are performed. To
this end, every set A in the population S is mutated to a new set by the
operator setMutate(A) and λ pairs of sets are selected in the set mating
selection step to form the parents of λ recombination operations. Note that
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Figure . Illustration of different types of MOEAs: (top lest) usual view of a MOEA where
the operators work on solutions; (top right) a set-based view of the same algorithm; (bottom)
an evolutionary algorithm working on sets, i.e., a P (X)/P (X)-optimizer.

the operator “∪” is the union between two multisets; since the population of
evolutionary algorithms usually contains duplicate solutions, the population
of Algorithm  is not restricted to sets. In the environmental selection step,
the new population is formed by selecting µ sets from the union of the
previous population and the varied solution sets. Figure . illustrates the
steps performed in one generation graphically.

Mutation of Solution Sets
As mutation operator on solution sets, the same operator used by SPAM is
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: S ← pick population S uniformly at random as µ sets of N solutions from X
: i← 1 (set generation counter)
: while i ≤ gmax do
: M← ∅
: for all A ∈ S do
: M←M∪ {setMutate(A)}
: M′ ← setMatingSelection(M, λ)
: M′′ ← ∅
: for all (Ap, Aq) ∈M′ do

: M′′ ←M′′ ∪ {setRecombine(Ap, Aq)}
: S ← setEnvironmentalSelection(S,M′′)
: i← i + 1

Algorithm  A P (X)/P (X)-optimizer with (µ+, λ)-selection. Requires: number of solution sets
in population µ, number of solutions in each solution set N, number of offspring λ, maximum
number of generations gmax.

used, see Algorithm . As an example, the hypervolume indicator is used
with non-dominated sorting as underlying set preference. To determine
the fitness of a solution, an advanced concept which will be explained in
Chapter  is used mimicking Algorithm , i.e., aiming at generating the
minimal element among all sets of predefined size.

Recombination of Solution Sets
Because the goal is to maximize according to the underlying set preference,
(for instance the hypervolume indicator), the recombination operator on
sets should also aim at producing offspring preferred over the previous set
(e.g., with large hypervolume). Therefore, a new recombination operator on
solution sets A and B is proposed that is targeted at generating such off-
spring C. As an example, the hypervolume indicator is used, see Figure .
for an illustrative example. The idea behind the operator is to iteratively
delete the worst solution in the first parent and add the best individual from
the second parent until the new set would be no longer preferred over the
previous sets, e.g., no hypervolume improvement is possible. In more detail,
the process runs as described in the following.
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Figure . Illustration of the hypervolume-based recombination operator on solution sets:
two exemplary sets A and B with four solutions each are recombined to a set C. First, the solu-
tions in A are ranked according to their hypervolume losses. Then, iteratively, the solution in A
with smallest loss is deleted (middle row) and the solution in B that maximizes the hypervolume
indicator is added to A (last row) until no hypervolume improvement is possible. For each step,
the changes in hypervolume are annotated in the top right corner of the corresponding figure.

In a first step, all solutions in the first set A = {a1, . . . , a|A|} are ranked
according to their fitness as in Algorithm  (upper left figure in Figure .).
In our example, the fitness of a solution corresponds to the hypervolume that
is solely dominated by this solution, in other words, its hypervolume loss.
Then, the new set C results from A by iteratively removing the solution ai

with smallest fitness that is not yet removed (ties are resolved randomly,
see middle row in Figure .) and adding the solution b ∈ B that leads
to the minimal element, e.g., maximizes the hypervolume indicator of the
new set (last row in Figure .). The replacement of solutions stops before
the next exchange would lead to a set which is no longer preferred over the
previous set, i.e., A′′ ̸4 A′. In case of the hypervolume, the exchange would
decrease the hypervolume of the new set.

An important aspect worth mentioning is the asymmetry of the recombi-
nation operator, i.e., setRecombine(Ap, Aq) ̸= setRecombine(Aq, Ap). This
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asymmetry is the reason for selecting ordered pairs in the set mating selec-
tion step of Algorithm .

Mating and Environmental Selection
In the following, four different variants of mating and environmental selec-
tion combinations are presented. Two variants choose sets for recombination
directly from the mutated sets (denoted A-variants) whereas the other two
variants choose one mutated set as the first parent and the set containing
all solutions of all other sets as the second parent for recombination (called
B-variants):

Variant A randomly selects µ pairs of sets in the mating selection step and
uses (µ, µ)-selection in its environmental selection step.

Variant A selects all possible µ · (µ − 1) pairs of sets in mating selection
and selects the best µ out of the µ · (µ − 1) new sets in environmental
selection.

Variant B selects one pair of sets only, where the first set A1 ∈M is selected
uniformly at random and the second set A2 is chosen as union of all
A ∈ M except A1 itself. In the environmental selection step, variant
B copies the only new set µ times to create the new population of µ

identical sets.
Variant B selects µ pairs of sets by choosing every set of M once as the

first set A1 of a parent pair and the second set A2 of the pair is chosen as
union of all a ∈M except A1 itself as in variant B. The environmental
selection of variant B chooses all µ newly generated sets to create the
new population.

Note that all variants perform mating selection independent of the under-
lying preference relation, the consideration of which may improve the opti-
mizer further.

.. ·Relation of SPAM and SPAM+ to Existing MOEAs

As already mentioned in Section .., SPAM presents a new perspective
on MOEAs such as NSGA-II, SPEA or the Indicator-Based Evolutionary
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Algorithm (IBEA). On the other hand, parallelized MOEAs can be in-
terpreted as a more general class of algorithm, some of them can even be
considered as optimizers operating on sets like SPAM+.

The first incitement to parallelization were the increasing complexity of
large scale problems and the availability of large computer clusters and
multiprocessor systems. The master-slave approach uses a master processor
that performs all operations on one global population except for fitness
evaluations which are delegated to different slave processors []. This
parallelization does not change the algorithm itself, and can be either seen
as a X/P(X)-optimizer or as a P(X)/P(X)-hillclimber.

The second major category of parallel MOEAs—the island model—on the
other hand, can be interpreted as P(X)/P(X)-optimizer that use more than
one set. An island model MOEA divides the overall population into different
islands or independent solution sets. Hence, when abstracting away from
parallelization, the island model can be interpreted as an algorithm operat-
ing on a population of sets. Each of these sets represents one island which is
optimized by a separate EA. This enables running different islands on sev-
eral computers at the same time. An island model without any exchange
of individuals between islands corresponds to a multi-start approach, where
each island represents one run, using different seeds or even different opti-
mization strategies []. Most island models, however, use a cooperative
approach. Although the subpopulations evolve independently most of the
time, solutions are exchanged once in a while between islands by migration.
A well designed migration lets information of good individuals pass among
islands and at the same time helps to preserve diversity by isolation of the
islands. In contrast to the approaches mentioned above, this paradigm also
uses recombination of sets (by migration) and can therefore be advantageous
not only in terms of runtime and robustness, but also in terms of quality of
the obtained Pareto-optimal solutions [].

There exist many aspects of migration strategy: (a) the way islands are
selected for migration (the set mating selection from a set based perspec-
tive), [, ] (b) the way the population is divided into subpopulations,
[, , ], and (c) the way islands are optimized, i.e., either by the very
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same optimizer or by using different parameters. For more details of the
different aspects of migration, refer to [] and [].

All island models mentioned so far do not use the concept of a set-based
fitness measure and operators. Also parallel MOEAs, when interpreted as
P(X)/P(X)-optimizers, usually do not perform environmental selection and
select the individuals for mating according to a fixed scheme given by the
neighborhood of the islands. One exception is the algorithm presented in [],
where islands are randomly selected and both mutation and recombination
are applied to subpopulations rather than to single solutions. The quality of
the newly generated subpopulations as well as their parents is then assessed
by a fitness value and the better sets are kept (set environmental selection).
However, the environmental selection only operates locally and the fitness
assignment is not a true set fitness since it corresponds to the sum of single
fitness values that are determined on basis of a global population.

. · Experimental Validation

This section investigates both SPAM (Section ..), and SPAM+ (Sec-
tion ..) with respect to optimizing set preference. First, Subsection ..
tackles the question whether SPAM really optimizes the underlying set pref-
erence relation. Next, in Subsection .. the question is explored as to
whether it would be advantageous to optimize multiple sets concurrently,
as done by SPAM+.

.. ·Experimental Validation of SPAM

First, the practicability of SPAM is investigated. The main questions are:
(i) can different user preferences be expressed in terms of set preference
relations, (ii) is it feasible to use a general search algorithm for arbitrary set
preference relations, i.e., is SPAM effective in finding appropriate sets, and
(iii) how well are set preference relations suited to guide the optimization
process? However, the purpose is not to carry out a performance comparison
of SPAM to existing MOEAs, but rather the separation of user preferences
and search algorithm is the focus of this chapter.
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Table . Overview of the set preference relations used in the experimental studies; for de-
tails, see Section ..
4mp
H hypervolume indicator IH with reference point (,) resp. (,,,,) and minimum elements par-

titioning
4mp
P,H preference-based quality indicator IP with two reference points r() = (., .) resp. (.,.,.,.,.), r()

= (.,.) resp. (.,.,.,.,.) with scaling factors ρ() = ⅓ and ρ() = ⅔, followed by the hypervolume
indicator IH with reference point (,) resp. (,,,,); in addition, minimum elements partitioning
is used. For IP , the same   weights λ are used for all reference points; the weights are (once) uniformly
randomly drawn from {(λ ,. . . , λn) ∈ Rn | λi >  for  ≤ i ≤ n, ||(λ ,. . . , λn)|| = }

4H,C,D unary hypervolume indicator IH with reference point (,) resp. (,,,,) followed by the
distance-to-front indicator IC (maximum distance of any solution to the closest front member) and the
diversity indicator ID (kth-nearest neighbor approach)

4mp
R,H R indicator IR with reference set B = {(,)} and Λ= {(,), (.,.), …, (.,.), (.,.), (.,.), …,

(,)} in the case of two objectives* (|Λ| = ), followed by hypervolume indicator IH with reference point
(,) resp. (,,,,); in addition, minimum elements partitioning is used

4mp
ε,H unary (additive) epsilon indicator Iε with reference set B = { (k·.,.-k·.) ; k ∈ {,,…,} } resp.

B = {(k·.,.-k·.,.-k·.,.-k·.,.-k·.) ; k ∈ {,,…,} }, followed by the hyper-
volume indicator IH with reference point (,) resp. (,,,,); in addition, minimum elements
partitioning is used

4mp
P,H preference-based quality indicator IP with reference point r()=(,) resp. (,,,,), followed by the hyp-

ervolume indicator IH with reference point (,) resp. (,,,,); in addition, minimum elements
partitioning is used. The same weights λ as in 4mp

P,H are used by IP .

4mp
D diversity indicator ID (kth-nearest neighbor approach) combined with minimum elements partitioning

*In the case of five objectives, overall · weight combinations are used for the set preference relation 4mp
R,H ,

cf. Table .. In detail, Λ is defined as follows: Λ= { (,,,,), (./,./,./,./,.), …, (./,./,./,./,.)}
∪ { (,,,,), (./,./,./,.,./), …, (./,./,./,.,./) } ∪ …∪ { (,,,,), (.,./,./,./,./),…,
(.,./,./,./,./) }. The considered reference set was B = {(,,,,)}

Comparison Methodology
In the following, different set preference relations are considered for inte-
gration in SPAM; they have been discussed in Section . and are listed
in Table .. All of them except of the last one are refinements of the set
dominance relation 4par; the relation 4mp

D is just used for the purpose of
mimicking the behavior of dominance and density based MOEAs such as
NSGA-II and SPEA. As reference algorithms, NSGA-II [] and IBEA

[] are used; in the visual comparisons also SPEA [] is included.

In order to make statements about the effectiveness of the algorithms con-
sidered, one needs to assess the generated Pareto set approximations with
With parameters κ= . and ρ= ..
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regard to the set preference relation under consideration. The use of the
Mann-Whitney U test is suggested to compare multiple outcomes of one al-
gorithm with multiple outcomes of another algorithm. This is possible since
all set preference relations considered in this chapter are total preorders;
otherwise, the approach proposed in [] can be applied. Thereby, one can
obtain statements about whether either algorithm yields significantly better
results for a specified set preference relation.

In detail, the statistical testing is carried as follows. Assuming two opti-
mizers OA and OB, first all Pareto-set approximations generated by OA
are pairwisely compared to all Pareto-set approximations generated by OB.
If, e.g., 30 runs have been performed for each algorithm, then overall 900
comparisons are made. Now, let A and B be two Pareto-set approximations
resulting from OA respectively OB; then, set A is considered better than
set B with respect to the set preference relation 4, if A ≺ B holds. By
counting the number of comparisons where the set of OA is better than
the corresponding set of OB, one obtains the test statistics U ; doing the
same for OB gives U ′ which reflects the number of cases where OB yields a
better outcome. The bigger U is compared to U ′, the better algorithm OA
is geared towards the test relation 4 regarding OB.

As long as the entirety of the considered sets can be regarded as a large
sample (e.g., 30 runs per algorithm), one can use the one-tailed normal
approximation to calculate the significance of the test statistics U , correcting
the variance for ties. Furthermore, multiple testing issues need to be taken
into account when comparing multiple algorithms with each other; here, the
significance levels are Bonferroni corrected.

Finally, the SPAM implementation used for the following experimental stud-
ies does not include the random set mutation operator, i.e., lines , , and 
in Algorithm  were omitted. The reason is that every set comparison
is computationally expensive—especially when the hypervolume indicator
is involved—and that in practice it is extremely unlikely that random set
mutation according to Algorithm  yields a set that is superior to the one
generated by the heuristic set mutation operator. Nevertheless, a set mu-
tation operator that in principle can generate any set in Ψ is important to
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guarantee theoretical convergence. One may think of more effective opera-
tors than Algorithm  which preserves the convergence property; however,
this topic is subject to future work and not investigated in this chapter.

One may also ask whether the if statement at line  of Algorithm  is
actually of practical relevance. Testing SPAM with three set preference
relations, namely 4mp

P0,H , 4mp
P1,H , and 4H,D, on a three-objective DTLZ

(Deb-Thiele-Laumanns-Zitzler ) problem instance indicates that in average
every 50th generation (using 4mp

P0,H) and 100th generation (using 4mp
P1,H and

4H,D) the set produced by heuristic mutation is worse than the current set,
i.e., the current set is not replaced. One can expect and observe, though,
that this situation arises especially when being close to or on the Pareto
front (all set members are incomparable) and less frequently at the early
phase of the search process. Overall no significant differences between the
quality of the outcomes could be measured when running SPAM with and
without the check at line ; in average, the computation time increased by
12% (4mp

P0,H and 4mp
P1,H) and 8% (4H,D). Nevertheless, it is recommended

to keep this additional check because it represents a crucial aspect of a
hill climber and prevents cycling behavior which is theoretically possible
whenever worse sets are accepted.

Results
This section provides experimental results for two test problems, namely
DTLZ and DTLZ [] with 20 decision variables for 2 and 5 objectives.
On the one hand, visual comparisons will be provided in order to verify to
which extent the formalized user preferences have been achieved. On the
other hand, statistical tests are applied to investigate which search strategy
is best suited to optimize which user preferences; for each optimizer, 30

have been carried out. The general parameters used in the optimization
algorithms are given in Table ..

Visual Comparisons of SPAM. Figure . shows the Pareto-set approxima-
tions generated by SPAM with the aforementioned set preference relations
and by the reference algorithms for the biobjective DTLZ problem (the



.. Experimental Validation 

Table . Parameter settings used in section ..

Parameter Value

set / population size α *,**
newly created solutions k *,**
number of generations  
mutation probability 
swap probability .
recombination probability 

continued

η-mutation 
η-recombination 
symmetric recombination false
scaling false
tournament size 
mating selection uniform

* visual comparision, ** statistical testing

dotted sector of a circle represents the Pareto-front). The plots well re-
flect the chosen user preferences: (a) a set maximizing hypervolume, (b) a
divided set close to two reference points, (c) focus on the extremes using
corresponding weight combinations, (d) closeness to a given reference set, (e)
a set minimizing the weighted epsilon-distance to the origin for a uniformly
distributed set of weight combinations, and (f) a uniformly distributed set of
solutions. This demonstrates that SPAM is in principle capable of optimiz-
ing towards the user preferences that are encoded in the corresponding set
preference relation. It can also be seen that the density-based approaches
by NSGA-II and SPEA can be imitated by using a corresponding diversity
indicator—although this is not the goal of this chapter.

Usefulness for Search of SPAM. After having seen the proof-of-principle re-
sults for single runs, the question of how effective SPAM is in optimizing
a given set preference relation 4 is investigated, i.e., how specific the op-
timization process is. The hypothesis is that SPAM used in combination
with a specific 4A (let us say SPAM-A) yields better Pareto set approxi-
mations than if used with any other set preference relation 4B (let us say
SPAM-B)—better here means with respect to 4A. Ideally, for every set A

generated by SPAM-A and every set B generated by SPAM-B, it would hold
A 4A B or even A ≺A B. Clearly, this describes an ideal situtation. A set
preference relation that is well suited for representing certain preferences
may not be well suited for search per se, cf. Section ..; for instance,
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Figure . Pareto-set approximations found aster   generations on a biobjective DTLZ
problem for a set size / population size of m = . All algorithms were started with the same
initial set / population.
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when using a single indicator such as the hypervolume indicator refinement
through set partitioning is important for effective search.

To this end, statistical comparisons of all algorithmic variants are made with
respect to the six refinements listed in Table .. Note that set partitioning
is only used for search, not for the comparisons. The outcomes of the
pairwise comparisons after Bonferroni correction are given in Tables .
and .. With only few exceptions, the above hypothesis is confirmed:
using 4A in SPAM yields the best Pareto-set approximations with regard
to 4A, independently of the problem and the number of objectives under
consideration. These results are highly significant at a significance level of
0.001.

Concerning the exceptions, first it can be noticed that there is no significant
difference between 4mp

H and 4H,C,D when used in SPAM—both times, the
hypervolume indicator value is optimized. This actually confirms the as-
sumption that set partitioning can be replaced by a corresponding sequence
of quality indicators. Second, the algorithm based on the set preference
relation 4mp

P0,H using the IP indicator with the origin as reference point
performs worse than SPAM with 4mp

H on DTL; this is not suprising as
it actually can be regarded as an approximation of the hypervolume-based
relation. However, it is suprising that SPAM with 4mp

P0,H is outperformed
by IBEA on both DTLZ and DTLZ; it seems that IBEA is more effective
in obtaining a well-distributed front. This result indicates the sensitivity
of 4mp

P0,H with respect to the distribution and the number of the weight
combinations chosen. The problem can be resolved by selecting a larger
number of weights as discussed in Section ...

.. ·Experimental Validation of SPAM+

The experiments described in this section serve to compare four P(X)/P(X)-
optimizer variants with SPAM.
In this comparison, the tests in Lines  to  in Algorithm  are omitted, as in experiments considering these lines
did not give statistically different results when using the 4mp

H as underlying preference relation, see also the con-
siderations made in Section ...
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Figure . Averaged running times of the four
P (X)/P (X)-optimizer variants and the standard
MOEA. SPAM A1 A2 B1 B2
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Four variants of SPAM+ are considered: A, A, B, and B named after the
used selection scheme as described in Section ... The set mutation and
set recombination operators are the same in all variants and implemented
as described in Section ... For a fair comparison, the mutation operator
in SPAM is also used as set mutation operator in all four SPAM+ variants.
The mutation operator corresponds to a run of a normal hypervolume-based
MOEA, as for example [] or [], for G generations. The used X/P(X)-
optimizer starts with a set of N solutions that is obtained from the overall
P(X)/P(X)-optimizer’s population. For G generations, N solutions of the
current set are selected in a mating selection step, these solutions undergo
SBX crossover and polynomial mutation as described in [] and in the en-
vironmental selection step, the best solutions from the previous population
and the new solutions are selected to form the new population.

Note that the implementation of the set mutation step is parallelized, i.e.,
the µ set mutation operations can be performed in parallel as µ indepen-
dent runs of the standard MOEA if the algorithm is run on a machine with
more than one core. Unless otherwise stated, the same parameters are used
for all algorithms. The hypervolume indicator is computed exactly for all
biobjective problems; otherwise,   samples are used to approximate
it; the reference point is chosen as (,…,) such that all solutions of the
considered problems have a positive hypervolume contribution. For com-
paring the algorithms, the standard MOEA runs for  generations with
a population size of —the P(X)/P(X)-optimizer variants use the same
number of function evaluations within gmax = 25 generations where the
µ = 10 sets of N = 20 solutions each are mutated for G = 20 generations
of the standard MOEA.
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To compare the four P(X)/P(X)-optimizer variants of Section .. and
the standard MOEA with the parameters described above,  runs are
performed for each of the test problems DTLZ, DTLZ, DTLZ [], as
well as WFG, WFG, and WFG by the Walking Fish Group [] with
, , and  objectives. Table . shows the performance score and the
normalized hypervolume in the last generation, i.e., the hypervolume indi-
cator of the set containing all single solutions in the last population, see
Appendix A on page  for an explanation of the performance score. In
addition, Figure . shows the running times of the different algorithms
on a bit AMD linux machine with  cores (.GHz) averaged over all 
test problems.

There are two main observations: On the one hand, the P(X)/P(X)-
optimizer variants are faster than the standard MOEA. On the other hand,
the quality of the solution sets obtained by the P(X)/P(X)-optimizer vari-
ants are, in part, better than the standard MOEA in terms of hypervolume
indicator values.

As to the running time, a speed-up is not surprising due to the parallel
implementation of the P(X)/P(X)-optimizer variants. However, the speed-
ups are higher than the number of cores except for the A variant which
indicates that there will be a speed-up even on a single processor. The reason
is mainly the faster hypervolume computation which depends heavily on the
number of solutions to be considered.

As to the solution quality, two observations stand out: the B and B
variants obtain, statistically significantly, better hypervolume values than
SPAM (mimicking a standard MOEA) on all DTLZ and DTLZ instances.
No general conclusion over all problems can be made for the A, B, and B
variants. The A variant, however, yields for  of the  problems better
results than SPAM (except for -objective DTLZ and -objective DTLZ).

The huge differences between the DTLZ and the WFG problems for the
different P(X)/P(X)-optimizer variants may be caused by the different
characteristics of elitism: a good solution is more likely to be contained in
all solution sets after recombination within the variants A, B, and B in
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Table . Performance
score P according to
Appendix A of the four
P (X)/P (X) variants
A, A, B, B, and
SPAM introduced in
Sections .. and ..
respectively. Smaller
values of P represent
better algorithms. In
brackets, the mean
hypervolume obtained
is shown, normalized to
[,], where larger values
represent better results.

SPAM A A B B

d

DTLZ  (.)  (.)  (.)  (.)  (.)
DTLZ  (.)  (.)  (.)  (.)  (.)
DTLZ  (.)  (.)  (.)  (.)  (.)
WFG  (.)  (.)  (.)  (.)  (.)
WFG  (.)  (.)  (.)  (.)  (.)
WFG  (.)  (.)  (.)  (.)  (.)

d

DTLZ  (.)  (.)  (.)  (.)  (.)
DTLZ  (.)  (.)  (.)  (.)  (.)
DTLZ  (.)  (.)  (.)  (.)  (.)
WFG  (.)  (.)  (.)  (.)  (.)
WFG  (.)  (.)  (.)  (.)  (.)
WFG  (.)  (.)  (.)  (.)  (.)

d

DTLZ  (.)  (.)  (.)  (.)  (.)
DTLZ  (.)  (.)  (.)  (.)  (.)
DTLZ  (.)  (.)  (.)  (.)  (.)
WFG  (.)  (.)  (.)  (.)  (.)
WFG  (.)  (.)  (.)  (.)  (.)
WFG  (.)  (.)  (.)  (.)  (.)

Mean P  . . . .

comparison to the A variant, i.e., the diversity is lower. In addition, the
diversity of solutions is also higher in the A variant because of its random
mating selection. This low diversity between single solutions might be the
reason why the three variants A, B, and B are not performing as good
as the A variant on the WFG problems. For the DTLZ problems, however,
the small diversity seems to cause no problems for the search, potentially
due to the structure of the problems.

. · Summary

This chapter has discussed EMO from a single-objective perspective that is
centered around set preference relations and based on the following three
observations:
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. the result of a MOEA run is usually a set of trade-off solutions repre-
senting a Pareto set approximation;

. most existing MOEAs can be regarded as hill climbers on set problems;
. most existing MOEAs are (implicitly) based on set preference informa-

tion.

When applying an evolutionary algorithm to the problem of approximating
the Pareto-optimal set, the population itself can be regarded as the current
Pareto set approximation. The subsequent application of mating selection,
variation, and environmental selection heuristically produces a new Pareto
set approximation that—in the ideal case—is better than the previous one.
In the light of the underlying set problem, the population represents a single
element of the search space which is in each iteration replaced by another
element of the search space. Consequently, selection and variation can be
regarded as a mutation operator on populations resp. sets. Somewhat
simplified, one may say that a classical MOEA used to approximate the
Pareto-optimal set is a (1, 1)-strategy on a set problem (the successor set
is chosen no matter whether the newly generated set is preferred over the
old set). Furthermore, MOEAs are usually not preference-free. The main
advantage of generating methods such as MOEAs is that the objectives do
not need to be aggregated or ranked a priori; but nevertheless preference
information is required to guide the search, although it is usually weaker and
less stringent. In the environmental selection step, for instance, a MOEA has
to choose a subset of individuals from the parents and the offspring which
constitutes the next Pareto set approximation. To this end, the algorithm
needs to know the criteria according to which the subset should be selected,
in particular when all parents and children are incomparable, i.e., mutually
non-dominating. That means the generation of a new population usually
relies on set preference information.

The intention of the chapter was to study how set preference information can
be formalized such that a total order on the set of Pareto set approximations
results. To this end, it has been shown how to construct set preference
relations on the basis of quality indicators and various examples have been
provided. Moreover, a Set Preference Algorithm for Multiobjective Opti-
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mization (SPAM) has been presented, which is basically a hill climber and
generalizes the concepts found in most modern MOEAs. SPAM can be used
in combination with any type of set preference relation and thereby offers
full flexibility for the decision maker. As the experimental results indicate,
set preference relations can be used to effectively guide the search as well
as to evaluate the outcomes of multiobjective optimizers.

SPAM has been generalized to SPAM+ maintaining not just a single, but a
population of multiple solution sets, such that SPAM+ can be considered as
a (µ +, λ) MOEA on sets. In other words, one may think of SPAM+ being a
true evolutionary algorithm for set-based multiobjective optimization, one
that operates on a population of multiple Pareto set approximations. The
experimental results show that the approach of maintaining multiple sets
is beneficial in terms of (a) the quality of the Pareto set approximations
obtained, and (b) the overall computation time being reduced. As to (a),
set recombination seems to play a major role, while (b) is mainly because
the set mutation operating independently on subsets of the population is
often faster to compute for smaller solutions sets. For instance, the hyp-
ervolume-based preference relation considered in this chapter benefits a lot
from smaller sets.

Clearly, there are many open issues. Firstly, although this chapter ap-
proached how to formalize, optimize and compare set preference relation,
no efforts have been made to characterize the minimal element the concepts
are looking for. For instance, it is not clear what set of given size µ maxi-
mizes the hypervolume indicator. This question will be approached in the
next chapter.

Secondly, the design of fast search algorithms dedicated to particular set
preference relations is of high interest; SPAM and SPAM+ provide flexibility,
but are rather baseline algorithms that naturally cannot achieve maximum
possible efficiency, these issues will be tackled in Chapter  to  of the
present thesis.




Theory of the
Weighted Hypervolume Indicator:
Optimal µ-Distributions and the
Choice of the Reference Point

The preceding chapter demonstrated, how preference on sets can be ex-
pressed and optimized. Quality indicators play a major role in this setting,
as they inherently induce a total order which is crucial in the context of
search. When using quality indicators as underlying set preference, the
optimization goal changes from optimizing a set of objective functions simul-
taneously to the single-objective optimization goal of finding a set of points
that maximizes the underlying indicator, where the number of points in the
set is usually limited. Understanding the difference between these two opti-
mization goals is fundamental when applying indicator-based algorithms in
practice. On the one hand, a characterization of the inherent optimization
goal of different indicators allows the user to choose the indicator that meets
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her preferences. On the other hand, knowledge about those sets of µ points
with the optimal indicator values can be used in performance assessment if
the indicator is used as a performance criterion.

Due to the unique properties of the hypervolume indicator, namely being
the only known indicator as of February  being a refinement of Pa-
reto dominance (see Section ..), this chapter focuses on the weighted
hypervolume indicator. Two major questions are tackled in the following:
firstly, Section . addresses the question of characterizing so called optimal
µ-distributions for the weighted hypervolume indicator, in other words, the
optimal set of µ points reaching the largest hypervolume for a given weight
function.

Secondly, in Section . a second important aspect of the weighted hypervol-
ume is addressed, which is the influence of the reference set on the optimal
distribution of points, in particular using a single reference point. This
chapter provides several theoretical reasonings helping to understand the
influence of the reference point, but also gives practical recommendations
to be used in hypervolume-based search.

. · Background

In practice, the population size |P | of indicator-based algorithms is upper
bounded, say |P | ≤ µ, with µ ∈ N, and the optimization goal changes to
finding a set of µ solutions optimizing the quality indicator. Such a set
is denoted as optimal µ-distribution for the given indicator. In this case,
the additional questions arise how the number of points µ influences the
optimization goal and to which set of µ objective vectors the optimal µ-
distribution is mapped, i.e., which search bias is introduced by changing
the optimization goal. Ideally, the optimal µ-distribution for an indicator
only contains Pareto-optimal points and an increase in µ gives more and
more Pareto-optimal points until the entire Pareto front is covered if µ

approaches infinity. It is clear, for example by looking at Figure . on
page , that in general, two different quality indicators yield a priori two
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different optimal µ-distributions, or in other words, introduce a different
search bias. This has for instance been shown experimentally by Friedrich
et al. [] for the multiplicative ε-indicator and the hypervolume indicator.

In this chapter the weighted and unweighted hypervolume indicator [] are
investigated in detail as they are particularly interesting indicators being a
refinement of the Pareto dominance relation, see Section . on page .
Thus, an optimal µ-distribution contains only Pareto-optimal solutions and
the set (probably unbounded in size) that maximizes the (weighted) hyp-
ervolume indicator covers the entire Pareto front []. Many other quality
indicators do not have this property which is the main reason why the hyp-
ervolume indicator is probably the most used quality indicator applied to
environmental selection of indicator-based evolutionary algorithms such as
the SMS-EMOA [], MO-CMA-ES [], or HypE (Chapter ). Neverthe-
less, it has been argued that using the (weighted) hypervolume indicator to
guide search introduces a certain bias. Interestingly, several contradicting
beliefs about this bias have been reported in the literature which will be dis-
cussed later on in more detail in Section .. They range from stating that
convex regions may be preferred to concave regions to the argumentation
that the hypervolume is biased towards boundary solutions. In the light of
this discussion, a thoroughly investigation of the effect of the hypervolume
indicator on optimal µ-distributions is necessary.

Another important issue when dealing with the hypervolume indicator is
the choice of the reference set R, in particular, choosing a reference point r

as reference, i.e., R = {r}. The influence of the reference point on optimal
µ-distributions has not been fully understood, especially for the weighted
hypervolume indicator, and only rules-of-thumb exist on how to choose the
reference point in practice. In particular, it could not be observed from
practical investigations how the reference point has to be set to ensure to
find the extremes of the Pareto front. Several authors recommend to use
the corner of a space that is a little bit larger than the actual objective
space as the reference point [, ]. For performance assessment, others
recommend to use the estimated nadir point as the reference point [, ,
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]. Also here, theoretical investigations are highly needed to assist in
practical applications.

This chapter should contribute to the above questions giving a better un-
derstanding of the search bias the hypervolume indicator is introducing,
and providing theoretically founded recommendations on where to place
the reference point in the case of two objectives.

In particular,

• the sets of µ points that maximize the (weighted) hypervolume indicator
are characterized, i.e., optimal µ distributions are investigated. Besides
general investigations for finite µ, a limit result for µ going to infin-
ity is derived in terms of a density of points. Furthermore the chapter
investigates

• the influence of the reference point on optimal µ-distributions, i.e., gives
lower bounds for the reference point (possibly infinite) for guaranteeing
the Pareto front’s extreme points in an optimal µ-distribution, and in-
vestigates cases where the extremes are never contained in an optimal
µ-distribution; In addition,

• it is proven in case the extremes can be obtained that for any reference
point dominated by the nadir point—with any small but positive distance
between the two points—there is a finite number of points µ0 (possibly
large in practice) such that for all µ > µ0, the extremes are included in
optimal µ-distributions. Last,

• the theoretical results are applied to all test problems of the ZDT [],
DTLZ [], and WFG [] test problem suites resulting in recommended
choices of the reference point including numerical and sometimes analyt-
ical expressions for the resulting density of points on the front.

The chapter is structured as follows. First, the notations and definitions are
introduced needed in the reminder of the chapter (Section ..). Then,
the bias of the weighted hypervolume indicator in terms of optimal µ-
distributions is considered. After characterizing optimal µ-distributions
for a finite number of solutions (Section ..), results on the density of
points if the number of points goes to infinity (Section ..) are derived.
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Section . then investigates the influence of the reference point on optimal
µ-distributions especially on the extremes.

. · General Aspects and Notations

In what follows, biobjective problems are considered, i.e., two objective func-
tion f1 and f2 have to be minimized. The Pareto front, see Definition .
on page , can thus be described by a one-dimensional function g mapping
the image of the Pareto set (see Definition . on page ) under the first
objective f1 onto the image of the Pareto set under the second objective f2,

g : u ∈ D 7→ g(u) ,

where D denotes the image of the Pareto set under the first objective. D

can be, for the moment, either a finite or an infinite set. An illustration
is given in Figure .(a) where the function g describing the front has a
domain of D = [umin, umax].

Example .: Consider the biobjective problem DTLZ from the DTLZ test
problem suite which is defined as

minimize f1(x) =
(
1 + h(xM )

)
cos(x1π/2)

minimize f2(x) =
(
1 + h(xM )

)
sin(x1π/2)

h(xM ) =
∑

xi∈xM

(xi − 0.5)2

subject to 0 ≤ xi ≤ 1 for i = 1, . . . n

where xM denotes a subset of the decision variables x = (x1, . . . , xn) ∈
[0, 1]n with h(xM ) ≥ 0. The Pareto front is reached for h(xM ) = 0, see
[]. Hence, the Pareto-optimal points have objective vectors (cos(x1π/2),

sin(x1π/2)) with 0 ≤ x1 ≤ 1 which can be rewritten as points (u, g(u)) with
g(u) =

√
1− u2 and u ∈ D = [0, 1], see Figure .(f). ◦

Since g represents the shape of the trade-off surface, for minimization prob-
lems, g is strictly monotonically decreasing in D.
If g is not strictly monotonically decreasing, Pareto-optimal points (u ,g(u)) and (u ,g(u)) exist with u , u ∈ D such
that, without loss of generality, u < u and g(u) ≤ g(u), i.e., (u ,g(u)) is dominating (u ,g(u)).
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Figure . The weighted hypervolume indicator IwH (A) corresponds to the integral of a weight
function w(z) over the set of objective vectors that are weakly dominated by a solution set A
and in addition weakly dominate the reference point r (gray area). On the lest, the set f(A) is
described by a function g: [umin ,umax]→ R. On the right, the computation of the hypervolume
indicator is shown for µ solutions (u , g(u)), …, (uµ , g(uµ)) and the reference point r = (r , r) in
the biobjective case as defined in Eq. ..

The coordinates of a point belonging to the Pareto front are given as a
pair (u, g(u)) with u ∈ D and therefore, a point is entirely determined
by the function g and the first coordinate u ∈ D. For µ points on the
Pareto front, their first coordinates is denoted as (u1, . . . , uµ). Without loss
of generality, it is assumed that ui ≤ ui+1, for i = 1, . . . , µ − 1 and for
notation convenience, let uµ+1 := r1 and g(u0) := r2 where r1 and r2 are
the first and second coordinate of the reference point r (see Figure .(b)),
i.e., r = {(r1, r2)}. The weighted hypervolume enclosed by these points can
be decomposed into µ components, each corresponding to the integral of the
weight function w over a rectangular area (see Figure .(b)). The resulting
weighted hypervolume writes:

Iw
H((u1, . . . , uµ)) :=

µ∑
i=1

∫ ui+1

ui

∫ g(u0)

g(ui)
w(u, v) dv du . (.)

When the weight function equals one everywhere, one retrieves the expres-
sion for the non-weighted hypervolume

IH((u1, . . . , uµ)) :=
µ∑

i=1

(ui+1 − ui)(g(u0)− g(ui)) . (.)
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Please note, that in the following in order to simplify notations the indicators
are defined also for sets of u-coordinate values, where Iw

H((u1, . . . , uµ)) reads
as Iw

H({f−1(u1, g(u1)), . . . , f−1(uµ, g(uµ))}).

Remark .: Looking at Eq. . and Eq. ., one sees that for a fixed g, a
fixed weight w and reference point, the problem of finding a set of µ points
maximizing the weighted hypervolume amounts to finding the solution of
a µ-dimensional (mono-objective) maximization problem, i.e., optimal µ-
distributions are the solution of a µ-dimensional problem. Here and in
the remainder of the chapter, dimension refers to the dimension of the
search space—as in single-objective optimization—and not to the number of
objectives.

Indicator-based evolutionary algorithms that aim at optimizing a unary
indicator I : Ψ → R transform a multiobjective problem into the single-
objective one consisting in finding a set of points maximizing the respective
indicator I. In practice, the sets of points are usually upper bounded by a
constant µ, typically the population size.

Definition . (optimal µ-distribution): For µ ∈ N and a unary indicator I, a
set of µ points maximizing I is called an optimal µ-distribution for I.

The rest of the chapter is devoted to understand optimal µ-distributions for
the hypervolume indicator in the biobjective case. The u-coordinates of an
optimal µ-distribution for the hypervolume Iw

H will be denoted (υµ
1 , . . . , υµ

µ)


and will thus satisfy

Iw
H(υµ

1 , . . . , υµ
µ) ≥ Iw

H((u1, . . . , uµ)) for all (u1, . . . , uµ) ∈ D × . . .×D .

Note, that the optimal µ-distribution might not be unique, and (υµ
1 , . . . , υµ

µ)

therefore refers to one optimal µ-distribution. The corresponding value of
the hypervolume will be denoted Iw∗

H,µ, i.e., Iw∗
H,µ = Iw

H(υµ
1 , . . . , υµ

µ).

The optimal u-coordinates are denoted by υ (greek upsilon), which looks exactly like v typeset in the serif font of
this thesis.
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. · Characterization of Optimal µ-Distributions for Hypervolume
Indicators

Whereas all sets containing µ Pareto-optimal solutions can be seen as “equ-
ally good” when the Pareto dominance relation is solely taken into account,
optimizing the hypervolume indicator introduces a certain bias, i.e., different
sets of µ Pareto-optimal solutions are associated with different hypervolume
indicator values and the optimization goal changes to finding an optimal µ-
distribution.

Several contradicting beliefs about this bias, the hypervolume indicator is
introducing, have been reported in the literature. For example, Zitzler and
Thiele [] stated that, when optimizing the hypervolume in maximization
problems, “convex regions may be preferred to concave regions”, which has
been also stated by Lizarraga-Lizarraga et al. [] later on, whereas Deb
et al. [] argued that “[…] the hyper-volume measure is biased towards the
boundary solutions”. Knowles and Corne [] observed that a local optimum
of the hypervolume indicator “seems to be ‘well-distributed’” which was also
confirmed empirically [, ]. Beume et al. [], in addition, state several
properties of the hypervolume’s bias: (i) optimizing the hypervolume indica-
tor focuses on knee points; (ii) the distribution of points on the extremes is
less dense than on knee points; (iii) only linear front shapes allow for equally
spread solutions; and (iv) extremal solutions are maintained. In the light
of this contradicting statements, a thorough characterization of optimal µ-
distributions for the hypervolume indicator is necessary. Especially for the
weighted hypervolume indicator, the bias of the indicator and the influence
of the weight function w on optimal µ-distributions in particular has not
been fully understood. The results, presented in this chapter provide a the-
oretical basis for better understanding the weighted hypervolume indicator
in terms of optimal µ-distributions.

In this section, optimal µ-distributions are characterized for both the un-
weighted and the weighted hypervolume indicator by means of theoretical
analyses. In a first part, the monotonicity in µ of the hypervolume asso-
ciated with optimal µ-distributions is shown, and the existence of optimal
µ-distributions for continuous fronts is proved. Then necessary conditions
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satisfied by optimal µ-distributions are derived. In a second part, the density
associated with optimal µ-distributions when µ grows to infinity is deduced
analytically.

.. · Finite Number of Points

Strict Monotonicity of Hypervolume in µ for Optimal µ-Distributions
The following proposition establishes that the hypervolume of optimal (µ+

1)-distributions is strictly larger than the hypervolume of optimal µ-distri-
butions.

Proposition .: Let D ⊆ R, possibly finite and g : u ∈ D 7→ g(u) describe a
Pareto front. Let µ1 and µ2 ∈ N with µ1 < µ2, then Iwµ1∗

H < Iwµ2∗
H holds

if D contains at least µ1 + 1 elements ui for which ui < r1 and g(ui) < r2
holds.

Proof. To prove the proposition, it suffices to show the inequality for µ2 =

µ1 + 1. Assume Dµ1 = {υµ
1 , . . . , υµ

µ} with υµ
i ∈ R is the set of u-values

of the objective vectors of the optimal µ1-distribution for the Pareto front
defined by g with a hypervolume value of Iwµ1∗

H . Since U contains at least
µ1 +1 elements, the set U\Dµ1 is not empty and any unew ∈ U\Dµ1 can be
picked that is not contained in the optimal µ1-distribution and for which
g(unew) is defined. Let ur := min{u|u ∈ Dµ1 ∪ {r1}, u > unew} be the
closest element of Dµ1 to the right of unew (or r1 if unew is larger than all
elements of Dµ1). Similarly, let gl := min{r2, {g(u)|u ∈ Dµ1 , u < unew}}
be the function value of the closest element of Dµ1 to the left of unew (or
r2 if unew is smaller than all elements of Dµ1). Then, all objective vectors
within Hnew := [unew, ur[×[g(unew), gl[ are (weakly) dominated by the new
point (unew, g(unew)) but are not dominated by any objective vector given
by Dµ1 . Furthermore, Hnew is not a null set (i.e. has a strictly positive
measure) since unew > ur and gl > g(unew), and the weight w is strictly
positive which gives Iwµ1∗

H < Iwµ2∗
H .
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Existence of Optimal µ-Distributions
Before to further investigate optimal µ-distributions for Iw

H , a setting ensur-
ing their existence is established. From now on assume that D is a closed
interval denoted [umin, umax] such that g writes:

u ∈ [umin, umax] 7→ g(u).

The following theorem shows that a sufficient setting ensuring the existence
of optimal distributions is the continuity of g:

Theorem . (existence of optimal µ-distributions): If the function g describing
the Pareto-front is continuous, there exists (at least) one set of µ-points
maximizing the hypervolume.

Proof. Equation . defines a µ dimensional function of (u1, . . . , uµ). If g

is moreover continuous, Iw
H in Eq. . is continuous and upper bounded by

the hypervolume contribution of the entire front. Therefore, from the Mean
Value Theorem there exists a set of µ points maximizing the hypervolume
indicator.

Note that the previous theorem states the existence but not the uniqueness,
which cannot be guaranteed in general.

Characterization of Optimal µ-Distributions for Finite µ
This section provides a general result to characterize optimal µ-distributions
for the hypervolume indicator if µ is finite. The result holds under the
assumption that the front g is differentiable and is a direct application of
the fact that solutions of a maximization problem that do not lie on the
boundary of the search domain are stationary points, i.e. points where the
gradient is zero.

Theorem . (necessary conditions for optimal µ-distributions): If g is continu-
ous and differentiable and (υµ

1 , . . . , υµ
µ) are the u-coordinates of an optimal

µ-distribution for Iw
H , then for all υµ

i with υµ
i > umin and υµ

i < umax the
following equations hold

g′(υµ
i )

∫ υµ
i+1

υµ
i

w(u, g(υµ
i )) du =

∫ g(υµ
i )

g(υµ
i−1)

w(υµ
i , v) dv (.)
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where g′ denotes the derivative of g, g(υµ
0 ) = r2 and υµ

µ+1 = r1.

Proof. The proof idea is simple: optimal µ-distributions maximize the µ-
dimensional function Iw

H defined in Eq. . and should therefore satisfy nec-
essary conditions for local extrema of a µ-dimensional function stating that
the coordinates of a local extrema lie either on the boundary of the domain
(here umin or umax) or satisfy that the partial derivative with respect to this
coordinate is zero. Hence, the partial derivatives of Iw

H has to be computed.
This step is quite technical and is presented in Appendix C. on page 
together with the full proof of the theorem.

The previous theorem proves an implicit relation between the points of
an optimal distribution, however in certain cases of weights, this implicit
relation can be made explicit as illustrated first on the example of the weight
function w(u, v) = exp(−u), aiming at favoring points with small values
along the first objective.

Example .: If w(u, v) = exp(−u), Eq. . simplifies into the explicit re-
lation

g′(υµ
i )(e

−υµ
i − e−υµ

i+1) = e−υµ
i
(
g(υµ

i )− g(υµ
i−1)

)
◦ (.)

Another example where the relation is explicit is given for the unweighted
hypervolume IH , stated as a corollary of the previous theorem.

Corollary . (necessary condition for optimal distributions on unweighted hyp-
ervolume): If g is continuous, differentiable and (υµ

1 , . . . , υµ
µ) are the u-coor-

dinates of an optimal µ-distribution for IH , then for all υµ
i with υµ

i > umin
and υµ

i < umax the following equations hold

g′(υµ
i )(υ

µ
i+1 − υµ

i ) = g(υµ
i )− g(υµ

i−1) (.)

where g′ denotes the derivative of g, g(υµ
0 ) = r2 and υµ

µ+1 = r1.

Proof. The proof follows immediately from setting w = 1 in Eq. ..
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Remark .: Corollary . implies that the points of an optimal µ-distribu-
tion for IH are linked by a second order recurrence relation. Thus, in this
case, finding optimal µ-distributions for IH does not correspond to solving
a µ-dimensional optimization problem as stated in Remark . but to a 2-
dimensional one. The same remark holds for Iw

H and w(u, v) = exp(−u) as
can be seen in Eq. ..

The previous Corollary can also be used to characterize optimal µ-distributions
for certain Pareto fronts more generally as the following example shows.

Example .: Consider a linear Pareto front, i.e., a front that can be for-
mally defined as g : u ∈ [umin, umax] 7→ αu + β where α < 0 and β ∈ R.
Then, it follows immediately from Corollary . and Eq. . that the op-
timal µ-distribution for IH maps to objective vectors with equal distances
between two neighbored solutions:

α(υµ
i+1 − υµ

i ) = g(υµ
i )− g(υµ

i−1) = α(υµ
i − υµ

i−1)

for i = 2, . . . , µ − 1. Note that this result coincides with earlier results for
linear fronts with slope α = −1 (Beume et al. []) or the even more specific
case of a front of shape g(u) = 1− u (Emmerich et al. []). ◦

.. ·Number of Points Going to Infinity

Besides for simple fronts, like the linear one, Eq. . and Eq. . cannot
be easily exploited to derive optimal µ-distributions explicitly. However,
one is interested in knowing how the hypervolume indicator influences the
spread of points on the front, and in characterizing the bias is introduced
by the hypervolume. To reply to these questions, next the number of points
µ grows to infinity, and the density of points associated with optimal µ-
distributions is derived. Please note, that for continuous front shapes, even
if µ increases to infinity, not the whole set of solutions will be reached, as
the Pareto-set is uncountable.
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Figure . Every continu-
ous Pareto front g’(u) (lest)
can be described by a func-
tion g: u’ ∈ [, u’max] 7→ g(u’)
with g(u’max) =  (right) by a
simple translation.
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Density of Points on the Pareto Front
Without loss of generality let umin = 0, and let g : u ∈ [0, umax] 7→ g(u)

with g(umax) = 0 (Figure .). Let g be continuous within [0, umax], dif-
ferentiable and let its derivative be a continuous function g′ defined in the
interval ]0, umax[. An optimal µ distribution is defined as a set of µ points
maximizing the weighted hypervolume indicator. However, instead of max-
imizing the weighted hypervolume indicator Iwµ

H , it is easy to see that, since
r1r2 is constant, one can equivalently minimize

r1r2 − Iwµ
H ((uµ

1 , . . . , uµ
µ)) =

µ∑
i=0

∫ uµ
i+1

uµ
i

∫ g(uµ
i )

0
w(u, v) dv du

with g(uµ
0 ) = r2, and uµ

µ+1 = r1 (see Figure ., upper right). By subtract-
ing the area below the front curve, i.e., the integral

∫ umax
0 (

∫ g(u)
0 w(u, v) dv) du

of constant value (Figure ., lower left), one sees that minimizing

µ∑
i=0

uµ
i+1∫

uµ
i

g(uµ
i )∫

0

w(u, v) dv du−
umax∫
0

g(u)∫
0

w(u, v) dv du (.)

is equivalent to maximizing the weighted hypervolume indicator (Figure .,
lower right).

For a fixed integer µ, consider a sequence of µ ordered points in [0, umax],
uµ
1 , . . . , uµ

µ that lie on the Pareto front. It is assumed that the sequence
converges—when µ goes to ∞—to a density δ(u) that is regular enough.
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Figure . Illustration of
the idea behind deriving the
optimal density: Instead of
maximizing the weighted
hypervolume indicator
Iw,µH ((uµ ,…,u

µ
µ)) (upper lest), one

can minimize the area in
the (upper right) which is
equivalent to minimizing
the integral between the
attainment surface of the
solution set and the front
itself (lower lest) which can
be expressed with the help
of the integral of g (lower
right).
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Formally, the density in u ∈ [0, umax] is defined as the limit of the num-
ber of points contained in a small interval [u, u + h[ normalized by the
total number of points µ when both µ goes to ∞ and h to 0, i.e., δ(u) =

limµ→∞,h→0
1

µh

∑µ
i=1 [u,u+h[(u

µ
i ). As explained above, maximizing the weigh-

ted hypervolume is equivalent to minimizing Eq. ., which is also equiva-
lent to minimizing

Eµ = µ

[ µ∑
i=0

∫ uµ
i+1

uµ
i

∫ g(uµ
i )

0
w(u, v) dv du−

∫ umax

0

∫ g(u)

0
w(u, v) dv du

]
(.)

In the following, the equivalence between minimizing Eµ and maximizing
the hypervolume is assumed to also hold for µ going to infinity. Therefore,
the proof consists of two steps: (i) computing the limit of Eµ when µ goes
to ∞. This limit is going to be a function of a density δ. (ii) Finding
the density δ that minimizes E(δ) := limµ→∞ Eµ. The first step therefore
consists in computing the limit of Eµ.
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Lemma .: If g is continuous, differentiable with the derivative g′ continu-
ous, if u→ w(u, g(u)) is continuous, if υµ

1 , . . . , υµ
µ converge to a continuous

density δ, with 1
δ ∈ L2(0, umax), and ∃ c ∈ R+ such that

µ sup
((

sup
0≤i≤µ−1

|υµ
i+1 − υµ

i |
)

, |umax − υµ
µ|
)
→ c

then Eµ converges for µ→∞ to

E(δ) := −1

2

∫ umax

0

g′(u)w(u, g(u))

δ(u)
du . (.)

Proof. For the technical proof, see Appendix C. on page .

The limit density of µ-distribution for Iw
H , as explained before, is minimiz-

ing E(δ). It remains therefore to find the density which minimizes E(δ).
This optimization problem is posed in a functional space, the Banach space
L2(0, umax) and is also a constraint problem since the density δ has to sat-
isfy the constraint J(δ) :=

∫ umax
0 δ(u)du = 1. The constraint optimization

problem (P) that needs to be solved is summarized in:

minimize E(δ), δ ∈ L2(0, umax)

subject to J(δ) = 1
(P)

Theorem .: The density solution of the constraint optimization problem
(P) equals

δ(u) =

√
−g′(u)w(u, g(u))∫ umax

0

√
−g′(u)w(u, g(u))du

. (.)

Proof. The proof is given in Appendix C. on page .

Remark .: The previous density correspond to the density of points of the
front projected onto the u-axis (first objective), and one might be interested
in the density on the front δF . The density on the front gives for any curve
L(,umax) is a functional space (Banach space) defined as the set of all functions whose square is integrable in the
sense of the Lebesgue measure.
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on the front (a piece of the front) C, the proportion of points of the optimal
µ-distribution (for µ to infinity) contained in this curve by integration on
the curve:

∫
C δF ds. Since it is known that for any parametrization of

C, say t ∈ [a, b] → γ(t) ∈ R2, one has
∫

C δF ds =
∫ b

a δF (γ(t))∥γ′(t)∥2dt,
one can for instance use the natural parametrization of the front given by
γ(t) = (t, g(t)) giving ∥γ′(t)∥2 =

√
1 + g′(t)2 that therefore implies that

δ(u) = δF (u)
√
1 + g′(u)2. Note that a small abuse of notation is used

writing δF (u) instead of δF (γ(u)) = δF ((u, g(u))). one has to normalize the
result from Eq. . by the norm of the tangent for points of the front, i.e.,√
1 + g′(u)2. Therefore, the density on the front is

δF (u) =

√
−g′(u)w(u, g(u))∫ umax

umin

√
−g′(u)w(u, g(u))du

1√
1 + g′(u)2

. (.)

From Theorem . follows that the density of points only depends on the
slope of the front and the weight function at the considered point. Figure .
illustrates this dependency between the density for the unweighted hyper-
volume and the slope of the front. For front parts, where the tangent has
a gradient of -◦, the density has its maximum. For parts where the front
is parallel to the first or second objective (slope ◦ and -◦ respectively),
the density is zero.

Example .: Consider the test problem ZDT [, see also Figure .(b)]
which is defined as

minimize f1(x1) = x1

minimize f2(x) = h(x) ·
(
1− (f1(x1)/h(x)

)2
h(x) = 1 +

9

n− 1

n∑
i=2

xi

subject to 0 ≤ xi ≤ 1 for i = 1, . . . n

for n decision variables x = (x1, . . . , xn) ∈ [0, 1]n. The Pareto front corre-
sponds to setting h(x) = 1 which yields g(u) = 1 − u2 with umin = 0 and
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umax = 1 and g′(u) = −2u. Considering the unweighted case, the density
on the u-axis according to Eq. . is

δ(u) =
3

2

√
u (.)

and the density on the front according to Eq. . is

δF (u) =
3

2

√
u√

1 + 4u2
,

see Figure .(b) for an illustration. ◦

The density not only gives information about the bias of the hypervolume
indicator for a given front, but can also be used to assess the number of
solutions to be expected on a given segment of the front, as the following
example illustrates.

Example .: Consider again ZDT as in Example .. The question
is what fraction of points rF of an optimal µ-distribution have first and
second objectives smaller or equal 0.5 and 0.95 respectively. From g−1(v) =√
1− v2 and g−1(0.95) =

√
0.05 follows, that for the considered front seg-

ment u ∈ [
√
0.05, 0.5] holds. Using δ(u) given in Eq. . and integrating

over [
√
0.05, 0.5] yields:

rF =

∫ 0.5

√
0.05

δ(u)du =

∫ 0.5

√
0.05

3

2

√
udu =

1

4

√
2− 0.053/4 ≈ 24.78% .

Note that for the approximated optimal µ-distribution of a finite number of
µ = 100 points one obtains 24 points in the considered line segment, which
is close to the predicted percentage of rF = 24.78%. ◦

Comparison Between Optimal µ-Distributions and the Density
Lemma . states that the optimal distribution of µ points converges to
the density δ(u) given by Theorem . when µ goes to infinity. Here, the
quality of the approximation is investigated experimentally. To this end,
the approximation of the optimal µ-distributions is computed exemplary for
the ZDT test problem for µ = 10, µ = 100, and µ = 1000, using the tech-
nique described in the paper by the author and colleagues []. The reference
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Figure . Pareto front shape g(u), approximate optimal distribution of  points (black dots),
and the density δF(u) (gray shaded area) for the unweighted hypervolume indicator on all
continuous ZDT, DTLZ and WFG test problems.
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Figure . Shows the density
(solid line) at different slopes
of the Pareto front according
to Eq. . for constant weight
w(z) ≡ . The slope is expressed
as the angle α= atan(f’(x)) the
front makes with the positive
u-axis. Note that the density is
normalized such that δF(-◦) = .
Additionally, the weight necessary
to obtain a uniform distribution
according to Example . is
shown (dashed line).
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Figure . Comparison between the experimental density of points (shown as dots on the
front and as a step function to compare with the theoretical density) and the theoretical
prediction δF(x) (dashed line) of µ =  points (lest), µ =  (middle) and µ =   (right) on
the -objective ZDT problem.

point is set to (,). Figure . shows both the experimentally observed
histogram of the µ points on the front and the comparison between the
theoretically derived density and the obtained experimental approximation
thereof. By visual inspection, the convergence of the found µ-distribution to
the density is apparent. For µ = 1000 points, the theoretically derived den-
sity gives already a sufficient description of the finite optimal µ-distribution.
The density is therefore not only useful to assess the bias of the hypervolume
considering µ =∞, but is also helpful to accurately predict the distribution
of finite number of points.
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Extension to More Than Two Objectives
For more than two objectives, the increasingly complex shape of the hyper-
volume (see for instance Figure .(b)) renders a derivation of the density
hard. Nonetheless, Appendix C. on page  gives some indications how
Eq. . could be extended to d objectives, leading to the following conjec-
ture:

Conjecture .: Consider a continuous, differentiable (d-)-dimensional Pa-
reto front in the d dimensional objective space. Let z∗ denote a Pareto-
optimal point, and let e∗ = (e∗

1, . . . , e∗
d) denote the unit normal vector of the

front at z∗. Then the density of points δF (z
∗) at z∗ is

δF (z
∗) =

1

C
· d

√
w(z∗)

∏d
i=1 e∗

i

where w(z∗) denotes the weight function at z∗, and C is constant for a given
front shape.

Remark .: If Conjecture . holds, then the influence of the weight func-
tion decreases with increasing number of objectives as δF ∝ d

√
w. As for the

biobjective case, the density is maximized on knee points where the normal
vector on the front is 1/

√
d(1, . . . , 1), and is zero wherever the front is

parallel to at least one objective axis.

Expressing User Preference in Terms of Density
Equation . characterizes the density δF (u) of points that maximize the
weighted hypervolume indicator for a given weight function w(u, v) and front
shape g(u). The result can also be interpreted in the opposite direction:
given user-defined preference, expressed by a density, the corresponding
weight function can be derived. This allows to model user preference in a
concise manner by optimizing the weighted hypervolume indicator. Let the
desired density of the user be δ′

F (u), then by rearrangig Eq. . one obtains
the corresponding weight function

w(u, g(u)) ∝ 1 + g′(u)2

−g′(u)
· δ′

F (u)
2 . (.)
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Figure . Shows the  solutions found optimizing the hypervolume indicator with weight
function corresponding to two types of desired densities δφ

F (φ), according to Eq. ..

Note that the weight is a strictly positive finite function if −g′(u) is positive,
and that it peaks to infinity if the derivate of g either goes to 0 or −∞.

Example .: Consider the user preference δ′
F (u) ≡ 1, i.e., to obtain a

uniform distribution of points. Then from Eq. . the corresponding weight
is w(u, g(u)) ∝ (1 + g′(u)2)/−g′(u). Figure . shows this weight with
respect to different slopes of the front. The more the slope of the front
approaches 0◦ or −90◦ respectively, the more weight is needed in these
regions to still achieve a uniform density. ◦

In a paper by the author and colleagues [], an evolutionary algorithm has
been proposed based on Eq. .. Figure . shows the distribution of
 points obtained using this algorithm for two desired densities δ′

F (u),
expressed in polar coordinate (see [] for details). The resulting density of
points comes very close to the desired density, demonstrating that Theo-
rem . not only serves as a better theoretical understanding of the weigh-
ted hypervolume, but furthermore has also practical applications.

Equal Hypervolume Contributions
In the previous section the density of points has been derived for µ going to
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infinity. In the following the hypervolume contributions of the points, i.e.,
the Lebesgue measure solely dominated by a point, is investigated.

Definition . (hypervolume contribution): Let A ∈ Ψ be a Pareto set ap-
proximation, let x denote a solution x ∈ A, and let R ∈ Z be a reference
set. Then the hypervolume contribution CA(x) corresponds to the hypervol-
ume of x with respect to R, which is not dominated by any other solution
y ∈ A \ {x}, i.e.,

CA(x) := H(A, R) \H(A \ {x}, R) , (.)

and the Lebesgue measure λ(CA(x)) thereof gives the indicator value of the
hypervolume contribution.

Theorem .: As the number of point µ increases to infinity, the ratio be-
tween the hypervolume contributions of any two points υµ

i and υµ
j of an

optimal µ-distribution with both g′(υµ
i ) and g′(υµ

j ) finite goes to 1, i.e., each
point has the same hypervolume contribution.

Proof. The proof can be found in Appendix C. on page .

Example .: Figure . shows the coefficient of variation cv—the ratio
of the standard deviation to the mean—of the hypervolume contributions
for approximated optimal µ-distributions using the same algorithm as in
Example .. The considered front shape is g(u) = 1− u2. As the number
of points µ increases, cv decreases which indicates that the contributions
become more and more equal as stated by Theorem .. ◦

.. · Intermediate Summary

To summarize, the density follows as a limit result from the fact that the
integral between the attainment function of the solution set with µ points
and the front itself (lower right plot of Figure .) has to be minimized and
the optimal µ-distribution for finite points converges to the density when µ

increases. Furthermore, one can conclude that the number of points of an
optimal µ-distribution with u-values within a certain interval [a, b] converges
to
∫ b

a δ(u) du if the number of points µ goes to infinity.
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Instead of applying the results to specific test functions as in Example .,
the above results on the hypervolume indicator can also be interpreted in
a much broader sense: From Theorem ., it is known that it is only the
weight function and the slope of the front that influences the density of
the points of an optimal µ-distribution. This formally proven statement is
contrary to the prevalent belief that the shape of the front, i.e., whether it is
convex or concave makes a difference in the optimal distribution of solutions
on the front as it was stated in [] and []. Theorem . also contrasts
claims in other studies, e.g., that extreme points are generally preferred []
or the statements of Beume et al. [] that the distribution of points on
the extremes is less dense than on knee points and that extremal solutions
are always maintained. Since the density of points does not depend on
the position on the front but only on the gradient and the weight at the
respective point, the density close to the extreme points of the front can be
very high or very low—it only depends on the front shape. Section ..
will even present conditions under which the extreme points will never be
included in an optimal µ-distribution for Iw

H—in contrast to the statement
in [].

Assuming a constant weight and therefore investigating the unweighted hyp-
ervolume indicator, the density has its maximum for front parts where the
tangent has a gradient of -◦. Therefore, and compliant with the statement
in [], optimizing the unweighted hypervolume indicator stresses so-called
knee-points—parts of the Pareto front decision makers believe to be in-
teresting regions [, , ]. However, the choice of a weight that is not
constant can highly change the distribution of points and makes it possible
to include arbitrary user preferences into the search. With the weighted
hypervolume indicator, it is now even possible to obtain sets of points that
are uniformly distributed on different front shapes. With the unweighted
hypervolume indicator this is—as already stated in [] and proven in this
chapter—only possible for linear fronts, i.e., for those fronts, where the slope
and therefore the density is constant everywhere. Regarding the weighted
hypervolume, Theorem . also complies with the original paper by Zitzler
et al. []: the distribution of a finite set of points can be influenced by
the weight function. The new result proven here is how the distribution
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Figure . Shows the coefficient
of variation cv (the ratio of the
standard deviation to the mean) of
the hypervolume contributions for
the approximate optimal distribu-
tion of different µ. The front shape
is g(u) = - u.
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of points is changing: for a fixed front, it is the square root of the weight
that is directly reflected in the optimal density (respectively, the dth root
if Conjecture . holds).

. · Influence of the Reference Point on the Extremes

Clearly, optimal µ-distributions for Iw
H are in some way influenced by the

choice of the reference set R. Here, the widespread case R = {r} is con-
sidered, i.e., the reference set being a single reference point r. The choice
of the reference point influencing the outcomes of hypervolume-based algo-
rithms is well-known from practical observations. Knowles et al. [], for
example, demonstrated the impact of the reference point on the results of
selected multiobjective evolutionary algorithms based on an experimental
study. How in general the outcomes of hypervolume-based algorithms are
influenced by the choice of the reference point has not been investigated from
a theoretical perspective though. In particular, it could not be deduced from
practical investigations how the reference point has to be set to ensure to
find the extremes of the Pareto front, such that theoretical investigations
are highly needed to provide more concise information on the influence and
choice of the reference point.

In practice, mainly rules-of-thumb exist on how to choose the reference
point. Many authors recommend to use the corner of a space that is a little
bit larger than the actual objective space as the reference point. Examples
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include the corner of a box 1% larger than the objective space in [] or
a box that is larger by an additive term of 1 than the extremal objective
values obtained as in []. In various publications where the hypervolume
indicator is used for performance assessment, the reference point is chosen
as the nadir point of the investigated solution set, e.g., in [, , ],
while others recommend a rescaling of the objective values everytime the
hypervolume indicator is computed [].

This section tackles the question of how the reference point influences op-
timal µ-distributions. In particular, the section theoretically investigates
whether there exists a choice for the reference point that implies that the
extremes of the Pareto front are included in the optimal µ-distribution. The
presented results give insights into how the reference point should be chosen,
even if the weight function does not equal 1 everywhere. The main result,
stated in Theorem . and Theorem ., shows that for continuous and
differentiable Pareto fronts an implicit lower bounds can be given on the
u (objective f1) and v (objective f2) value for the reference point (possibly
infinite depending on the Pareto front g and weight function w) such that
all choices above this lower bound ensure the existence of the extremes in
an optimal µ-distribution for Iw

H . For the special case of the unweighted
hypervolume indicator, these lower bounds turn into explicit lower bounds
(Corollaries . and .). Moreover, Section .. shows that it is neces-
sary to have a finite derivative on the left extreme and a non-zero one on
the right extreme to ensure that the extremes are contained in an optimal
µ-distribution. This result contradicts the common belief that it is sufficient
to choose the reference point slightly above and to the right of the nadir
point or the border of the objective space to obtain the extremes as indicated
above. Finally, Theorem . shows that a point slightly worse than the
nadir point in all objectives starts to become a good choice for the reference
point as soon as µ is large enough.

Before the results are presented recall that r = (r1, r2) denotes the refer-
ence point and v = g(u) with u ∈ [umin, umax] represents the Pareto front,
In this chapter the nadir point equals (umax ,g(umin)), i.e., is the smallest objective vector that is weakly dominated by
all Pareto-optimal points.
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hence, (umin, g(umin)) and (umax, g(umax)) are the left and right extremal
point. Since all Pareto-optimal solutions need to have a contribution to
the hypervolume of the front in order to possibly be part of the optimal µ-
distribution, the reference point is assumed to be dominated by all Pareto-
optimal solutions, i.e. r1 > umax and r2 > g(umin). Additionally recall that
the weight function w of the weighted hypervolume indicator Iw

H is strictly
positive.

.. · Finite Number of Points

For the moment, the number of points µ is considered finite. For this
case, necessary and sufficient conditions are provided for the existence of
a finite reference point such that the extremes are included in any optimal
µ-distribution for Iw

H . In Section .., further results are derived for µ

going to infinity.

Fronts for Which It Is Impossible to Have the Extremes
A widespread belief is that choosing the reference point of the hypervolume
indicator in a way, such that it is dominated by all Pareto-optimal points,
is enough to ensure that the extremes can be reached by an indicator-based
algorithm that aims at maximizing the hypervolume indicator. The main
reason for this belief was that with such a choice of the reference point,
the extremes of the Pareto front always have a positive contribution to
the overall hypervolume indicator and should be therefore chosen by the
algorithm’s environmental selection. As will be shown in the following,
however, this is only a necessary, but not sufficient, condition. The following
theorem states an additional necessary condition to get the extremes:

Theorem .: Let µ be a positive integer. Assume that g is continuous
on [umin, umax], non-increasing, differentiable on ]umin, umax[ and that g′

is continuous on ]umin, umax[ and that the weight function w is continuous
and positive. If limu→umin g′(u) = −∞, the left extremal point of the front is
never included in an optimal µ-distribution for Iw

H . Likewise, if g′(umax) = 0,
the right extremal point of the front is never included in an optimal µ-
distribution for Iw

H .
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Proof. The idea behind the proof is to assume the extreme point to be
contained in an optimal µ-distribution and to show a contradiction. In par-
ticular, the gain and loss in hypervolume if the extreme point is shifted can
be computed analytically. A limit result for the case that limu→umin g′(u) =

−∞ (or g′(umax) = 0 respectively) shows that one can always increase the
overall hypervolume indicator value if the outmost point is shifted, see also
Figure C.. For the technical details, including a technical lemma, refer to
Appendix C. on page .

Example .: Consider the test problem ZDT [] for which the Pareto
front is g(u) = 1 −

√
u with umin = 0 and umax = 1, see Figure .(a).

The derivative g′(u) = −1/(2
√

u) equals −∞ at the left extreme umin hence
the left extreme (0, 1) is never included in an optimal µ-distribution for Iw

H

according to Theorem .. ◦

Although one should keep the previous result in mind when using the hyp-
ervolume indicator, the fact that the extreme can never be obtained in the
cases of Theorem . is less restrictive in practice. Due to the continu-
ous search space for most of the test problems, no algorithm will obtain a
specific solution exactly—and the extreme in particular—and if the number
of points is high enough, a solution close to the extreme will be found
also by hypervolume-based algorithms. Nonetheless, when using the weight
function in the weighted hypervolume indicator to model preferences of
the user towards certain regions of the objective search, one should take
Theorem C. into account and increase the weight drastically close to such
extremes if they are desired, see also discussion in Section ...

Lower Bound for Choosing the Reference Point to Obtain the Extremes
The previous section revealed that if the limit of the derivative of the front
at the left extreme equals −∞ (resp. if the derivative of the front at the
right extreme equals zero) there is no finite choice of reference point that
allows to have the extremes included in optimal µ-distributions for Iw

H . For
this reason, in the following the case is considered that the limit of the
Although the distance of solutions to the extremes might be sufficiently small in practice also for the scenario of
Theorem ., the theoretical result shows that for a finite µ, one cannot expect that the solutions approach the
extremes arbitrarily close.
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derivative of the front at the left extreme is finite (resp. the derivative of
the front at the right extreme is not zero). For this setting, finite reference
points are derived that indeed guarantee to have the extremes in any optimal
µ-distribution.

Lower Bound for Lest Extreme. The following theorem gives a lower bound
for the reference point to obtain the left most point of the Pareto front:

Theorem . (lower bound for lest extreme): Let µ be an integer larger or
equal . Assume that g is continuous on [umin, umax], non-increasing, dif-
ferentiable on ]umin, umax[ and that g′ is continuous on ]umin, umax[ and
lim

u→umin
−g′(u) <∞. If there exists a K2 such that

∀u1 ∈]umin, umax] :
∫ K2

g(u1)
w(u1, v) dv > −g′(u1)

∫ umax

u1

w(u, g(u1)) du ,

(.)

then for all reference points r = (r1, r2) such that r2 ≥ K2 and r1 > umax,
the leftmost extremal point is contained in all optimal µ-distributions. In
other words, defining R2 as

R2 = inf{K2 satisfying Eq. .} , (.)

the leftmost extremal point is contained in all optimal µ-distributions if
r2 > R2, and r1 > umax.

The proof of the theorem requires to establish a technical proposition. As-
sume the reference point is dominated by the Pareto front, i.e., at least
r1 > umax and r2 > g(umin). Let consider a set of points on the front and let
consider the hypervolume contribution of the leftmost point P1 = (u1, g(u1))

(see Figure .). This is a function of u1, u2 (the u-coordinate of the second
left-most point) and r2 (the second coordinate of the reference point). For
fixed u2 and r2, the hypervolume contribution of the leftmost point with
coordinate u1 ∈ [umin, u2[ is denoted as Iw

h (u1;u2, r2) and reads

Iw
h (u1;u2, r2) =

∫ u2

u1

∫ r2

g(u1)
w(u, v) dv du . (.)
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Figure . Shows the notation and formula to compute the hypervolume contributions of
the lestmost and rightmost points P and Pµ respectively.

Figure . If the hypervol-
ume indicator is maximal for
u = umin , then for any u ∈
]u ,umax] the contribution is
maximal for u = umin too.
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The following proposition establishes a key property of the function Iw
1 .

Proposition .: If u1 → Iw
h (u1;umax, r2) is maximal for u1 = umin, then for

any u2 ∈ ]u1, umax] the contribution Iw
h (u1;u2, r2) is maximal for u1 = umin

too.

Proof. Assume that Iw
h (u1;umax, r2) is maximal for u1 = umin, i.e., Iw

h (umin;
umax, r2) ≥ Iw

h (u1;umax, r2), ∀u1 ∈]umin, umax]. Let {D1, . . . , D5} denote
the weighted hypervolume indicator values of different non-overlapping rect-
angular areas shown in Figure .. Then for all u1 in ]umin, umax],
Iw

h (umin;umax, r2) ≥ Iw
h (u1;umax, r2) can be rewritten using D1, . . . , D5 as
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D1+ D2+ D4 ≥D2+ D3+ D4+ D5 which in turn implies that D1+D2 ≥ D2

+D3 +D5. Since D5 ≥ 0 it follows D1+ D2 ≥ D2+ D3, which corresponds
to Iw

h (umin;u2, r2) ≥ Iw
h (u1;u2, r2). Hence, Iw

h (u1;u2, r2) is also maximal
for u1 = umin for any choice u2 ∈]u1, umax].

Using Proposition ., Theorem . can be proven:

Proof. Let u1 and u2 denote the u-coordinates of the two leftmost points
P1 = (u1, g(u1)) and P2 = (u2, g(u2)). Then the hypervolume contribu-
tion of P1 is given by Eq. .. To prove that P1 is the extremal point
(umin, g(umin)) in the optimal µ-distributions, first one needs to prove that
u1 ∈ [umin, u2] 7→ Iw

h (u1;u2, r2) is maximal for u1 = umin. By using Propo-
sition ., it follows that if u1 → Iw

1 (u1;umax, r2) is maximal for u1 = umin
then it also follows that Iw

h : u1 ∈ [umin, u2] 7→ Iw
h (u1;u2, r2) is maximal for

u1 = umin. Therefore, only the proof that u1 → Iw
1 (u1;umax, r2) is maximal

for u1 = umin is needed. To do so, it will be shown that dIw
h (u1;umax,r2)

du1
̸= 0

for all umin < u1 ≤ umax. According to Lemma C., the partial derivative
of the hypervolume contribution of P1 is

dIw
h (u1;umax, r2)

du1
= −g′(u1)

∫ umax

u1

w(u, g(u1)) du−
∫ r2

g(u1)
w(u1, v) dv

Hence, by choosing r2 > R2 according to Theorem ., dIw
h (u1;umax,r2)

du1
̸= 0.

Applying the previous theorem to the unweighted hypervolume leads to an
explicit lower bound for setting the reference point so as to have the left
extreme:

Corollary . (lower bound for lest extreme): Let µ be an integer larger or
equal . Assume that g is continuous on [umin, umax], non-increasing, dif-
ferentiable on ]umin, umax[ and that g′ is continuous on ]umin, umax[. Assume
that limu→umin −g′(u) <∞. Then, if
R2 = sup{g(u) + g′(u)(u− umax) : u ∈ [umin, umax[} , (.)

is finite the leftmost extremal point is contained in optimal µ-distributions
for IH if the reference point r = (r1, r2) is such that r2 is strictly larger than
R2 and r1 > umax.
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Proof. Replacing w(u, v) by 1 in Eq. . of Theorem . gives

K2 − g(u1) > −g′(u1)(umax − u1), ∀u1 ∈]umin, umax] (.)

with any r2 ≥ K2, the leftmost extreme is included. The previous equa-
tion writes K2 > g(u1) − g′(u1)(umax − u1) for all u1 ∈]umin, umax]. Since
−g′(u1)(umax − u1) = g′(u1)(u1 − umax), Eq. . writes as

K2 > g(u1) + g′(u1)(u1 − umax), (.)

∀u1 ∈]umin, umax]. Because K2 has to be larger than the right-hand side of
Eq. . for all u1 in ]umin, umax], it has to be larger than the supremum of
g(u1) + g′(u1)(u1 − umax) for u1 in ]umin, umax] and thus

K2 > sup{g(u1) + g′(u1)(u1 − umax) : u1 ∈ [umin, umax[} (.)

R2 is defined as the infimum over K2 satisfying Eq. . in other words

R2 = sup{g(u) + g′(u)(u− umax) : u ∈ [umin, umax[} .

Example .: Consider test problem ZDT with g(u) = 1 − u2, umin = 0,
umax = 1, and g′(u) = −2u. Then the lower bound R2 to obtain the left
extremal point for IH according to Corollary . is

R2 = sup{1− u2 − 2u(u− 1) : u ∈ [0, 1[}
= sup{−3u2 + 2u + 1 : u ∈ [0, 1[} (.)

The only critical point of −3u2 + 2u + 1, obtained by setting its derivative
−6u+2 to zero, is ucrit = 1/3. By evaluating Eq. . at umin = 0, umax = 1,
and ucrit = 1/3, the supremum becomes

= sup{−3u2 + 2u + 1 : u ∈ {0, 1/3, 1, }}
= 4/3 (.)

Choosing any reference point (weakly) dominated by (umax,R2) = (1, 4/3)

hence guarantees to obtain the left extremal point in all µ-distributions of
IH with µ ≥ 2. ◦
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Lower Bound for Right Extreme. Next the right extreme is considered, tack-
ling the same question as for the left extreme: assuming that g′(umax) ̸= 0,
is there an explicit lower bound for the left coordinate of the reference point
ensuring that the right extreme is included in optimal µ-distributions.

Theorem . (lower bound for right extreme): Let µ be an integer larger or
equal . Assume that g is continuous on [umin, umax], non-increasing, dif-
ferentiable on ]umin, umax[ and that g′ is continuous on ]umin, umax[ and
g′(umax) ̸= 0. If there exists K1 such that

−g′(uµ)

∫ K1

uµ

w(u, g(uµ)) du >

∫ g(umin)

g(uµ)
w(uµ, v) dv (.)

then for all reference points r = (r1, r2) such that r1 ≥ K1 and r2 > g(umin),
the rightmost extremal point is contained in all optimal µ-distributions. In
other words, defining R1 as

R1 = inf{K1 satisfying Eq. .} , (.)

the rightmost extremal point is contained in optimal µ-distributions if r1 >

R2, and r2 > g(umin).

Proof. The proof is similar to the proof for the left extremal point (Theo-
rem .), and is listed in Appendix C. on page .

Applying the previous theorem to the unweighted hypervolume again gives
an explicit lower bound for setting the reference point so as to have the right
extreme.

Corollary . (lower bound for right extreme): Let µ be an integer larger or
equal . Assume that g is continuous on [umin, umax], non-increasing, dif-
ferentiable on ]umin, umax] and that g′ is continuous and strictly negative on
]umin, umax]. Assume that g′(umax) ̸= 0. Then, if

R1 = sup{u +
g(u)− g(umin)

g′(u)
: u ∈]umin, umax]} (.)

is finite the rightmost extremal point is contained in optimal µ-distributions
for IH if the reference point (r1, r2) is such that r1 is strictly larger than R1

and r2 > g(umin).
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Proof. Refer to Appendix C. on page  for a proof of Corollary ..

Example .: Again consider test problem ZDT with g(u) = 1−u2, umin =

0, umax = 1, and g′(u) = −2u. Then the lower bound R1 to obtain the right
extremal point for IH according to Eq. . is

R1 = sup{u +
1− u2 − (1− 02)

−2u
: u ∈ [0, 1[}

= sup{3
2

u : u ∈ [0, 1[} = 3

2

Together with result from Eq. . the lower bound R = (3/2, 4/3) is ob-
tained. Choosing any reference point (weakly) dominated by R guarantees
to obtain both extremal point in all µ-distributions of IH with µ ≥ 2. ◦

Table . lists the lower bound R of IH for all test problems of the Zitzler-
Deb-Thiele (ZDT), Deb-Thiele-Laumanns-Zitzler (DTLZ), and Walking
Fish Group (WFG) suites. Note that R1 in Eq. ., R2 in Eq. ., as
well as for the non-weighted case Eq. . and Eq. . respectively are not
tight bounds. This is so because the bounds are based on the worst-case
setting of u2 = umax and uµ−1 = umin respectively.

.. ·Number of Points Going to Infinity

The lower bounds derived for the reference point such that the extremes
are included are independent of µ. It can be seen in the proof that those
bounds are not tight if µ is larger than 2. Deriving tight bounds is difficult
because it would require to know for a given µ where the second point of
optimal µ-distributions is located. It can be certainly achieved in the linear
case, but it might be impossible in more general cases. However, this section
investigates how µ influences the choice of the reference point so as to have
the extremes. In this section RNadir

1 and RNadir
2 denote the first and second

coordinates of the nadir point, namely RNadir
1 = umax and RNadir

2 = g(umin).

It is first proven that for any reference point dominating the nadir point,
there exists a µ0 such that for all µ larger than µ0, optimal µ-distributions
associated to this reference point include the extremes. Before, establishing
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Table . Lists for all ZDT, DTLZ, and WFG test problems and the unweighted hypervolume
indicator IH: (i) the Pareto front as [umin ,umax] 7→ g(u), (ii) the density δF(u) on the front according
to Eq. ., and (iii) a lower boundR = (R,R) of the reference point to obtain the extremes
(Eq. . and . respectively). Γdenotes the Gamma function.
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a lemma saying that if there exists a reference point R1 allowing to have the
extremes, then all reference points R2 dominated by this reference point R1

will also allow to have the extremes.

Lemma .: Let R1 = (r11, r12) and R2 = (r21, r22) be two reference points
with r11 < r21 and r12 < r22. If both extremes are included in optimal µ-
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distributions for Iw
H associated with R1 then both extremes are included in

optimal µ-distributions for Iw
H associated with R2.

Proof. The proof is presented in Appendix C. on page .

Theorem .: Assume that g is continuous, differentiable with g′ continuous
on [umin, umax] and the weight function w is bounded, i.e. there exists a
W > 0 such that w(u, v) ≤W for all (u, v). Then for all ε = (ε1, ε2) ∈ R2

>0,

. there exists a µ1 such that for all µ ≥ µ1, and any reference point R

dominated by the nadir point such that R2 ≥ RNadir
2 +ε2, the left extreme

is included in optimal µ-distributions,
. there exists a µ2 such that for all µ ≥ µ2, and any reference point R

dominated by the nadir point such that R1 ≥ RNadir
1 + ε1, the right

extreme is included in optimal µ-distributions.

Proof. The proof is presented in Appendix C. on page .

As a corollary one gets the following result for obtaining both extremes
simultaneously:

Corollary .: Let g be continuous, differentiable with g′ continuous on
[umin, umax] and let w be bounded, i.e. there exists W > 0 such that
w(u, v) ≤ W for all (u, v). For all ε = (ε1, ε2) ∈ R2

>0, there exists µ0

such that for µ larger than µ0 and for all reference point dominated by
(RNadir

1 + ε1,RNadir
2 + ε2), both the left and right extremes are included in

optimal µ-distributions.

Proof. The proof is straightforward taking for µ0 the maximum of µ1 and
µ2 in Theorem ..

Theorem . and Corollary . state that for biobjective Pareto fronts
which are continuous on the interval [umin, umax] and bounded weight, one
can expect to have the extremes in optimal µ-distributions for any reference
point dominated by the nadir point if µ is large enough, i.e., larger than
µ0. Unfortunately, the proof does not allow to state how large µ0 has to be
chosen for a given reference point but it is expected that µ0 depends on the
reference point as well as on the front shape g and weight function w.
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.. · Intermediate Summary

In summary, two cases can distinguished relevant in terms of obtaining the
extremal point of an optimal µ-distribution for the unweighted hypervolume
indicator IH :

. The derivative g′(u) of the Pareto front converges to −∞ as µ→ umin. If
this holds, then the left extremal point is never contained in the optimal
µ-distribution for any finite choice of µ or reference point r. Similarly, if
g′(umax) = 0 holds, the right extremal point is never contained.

. If, on the other hand, g′(umin) is finite and g(umax) > 0 respectively,
the extremal point can be guaranteed when choosing the reference point
such that r2 > R1 (for the left extreme) and choosing r1 > R2 (to obtain
the right extreme).

The first point () demonstrates, that no universal rule for the choice of the
reference point exists which guarantees that extremal points are contained
in the optimal set of points. Rather, in many cases one or both extremal
points are never contained in the optimal set, for instances on ZDT, , and
 or WFG and . In practice, however, the implications are not restrictive.
First off, due to the continuous search space for most of the test problems,
no algorithm will obtain the extreme exactly anyways, and if the number
of points is high enough, a solution close to the extreme will be found by
hypervolume-based algorithms too. Secondly, Theorem . does not hold
for the weighted hypervolume indicator in general. In fact, the following
weight function we can be used whose corresponding indicator Iwe

H behaves
like IH , except for the extremal solutions:

we(u, v) :=

IH(A∗)δ2(u, v) (u, v) ∈ {(umin, g(umin)), (umax, g(umax))}
1 otherwise

(.)

where δ2(u, v) denotes the two-dimensional delta function with
∫∞

−∞
∫∞

−∞
δ2(u, v) du dv = 1, and IH(A∗) denotes the hypervolume of the entire Pareto
set. Using Eq. . ensures, that distributions that contain both extremal
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points will always have a larger hypervolume indicators than those sets
containing one or no extremal point.

For the remaining cases (), i.e., when the derivative −g′(umin) is finite
and g′(umax) > 0 respectively, this chapter provides lower bounds for the
choice of the reference point for both Iw

H (Theorems . and .) and
as a special case for IH (Corollaries . and .). The provided bounds
are not tight, though. This is not relevant in practice for two reasons:
first, the reference point needs to be dominated by the objective vectors
of all potential solutions in order that the hypervolume indicator induces
a refinement of Pareto dominance, see Section ... In other words, the
reference points needs to lie outside the objective space, which is often more
restrictive than the lower bound. For WFG, for instance, the objective
space extends to (3, 5), while the lower bound for the reference point is
(2, 2). Secondly, the only incentive to choose the reference point not too
large, is to avoid numerical problems. As Table . reveals, all (finite)
lower bounds for the reference point are small and no numerical issues are
expected concerning the hypervolume values.

Even though the extremal points can be reached in many cases without
choosing a very large reference point, the many existing recommendations
are not sufficient. Choosing the reference point a little bit larger than the
actual objective space as proposed by [, ] for instance might not hold
for DTLZ. As µ grows to infinity, however, the reference point converges
to the nadir point RNadir = (umin, g(umax)).

. · Summary

Indicator-based Evolutionary Algorithms transform a multiobjective optimi-
zation problem into a single-objective one, that corresponds to finding a set
of µ points that maximizes the underlying quality indicator. Theoretically
understanding these so-called optimal µ-distributions for a given indicator
is a fundamental issue both for performance assessment of multiobjective
optimizers and for the decision which indicator to take for the optimization
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in practice such that the search bias introduced by the indicator meets the
user’s preferences.

This chapter has characterized optimal µ-distributions in different ways:

• In Theorem . a necessary condition for optimal distributions has been
stated. This condition allows to directly assess, whether a distribution
maybe optimal. On the other hand, it is also helpful to design fast
algorithms to approximate µ-distributions, since it links the position
of all optimal points by a second order recurrence relation. Therefore,
finding optimal µ-distributions corresponds to solving a 2-dimensional
problem regardless of the number of objectives or number of points.

• Increasing µ to infinity, optimal µ-distributions have been characterized
for the weighted hypervolume indicator in case of biobjective problems.
As has been demonstrated by an example, the (approximated) optimal µ-
distributions and the density concur precisely already for small µ. Hence,
the density allows to assess the bias of the weighted hypervolume indi-
cator in general, but also to predict the optimal distribution for finite µ.
The density is only given for biobjective problems, however, as a start-
ing point for further research, considerations are presented leading to a
conjecture for the density for arbitrary numbers objectives.

• Finally, the density formula also allows to translate user preference ex-
pressed in terms of density of points to a specific weight function.

Furthermore, the influence of the reference point on optimal µ-distributions
has been investigated resulting in

• lower bounds for placing the reference point for guaranteeing the Pareto
front’s extreme points in an optimal µ-distribution;

• characterizing cases where the extremes are never contained in an opti-
mal µ-distribution; and in addition,

• the belief, the best choice for the reference point corresponds to the nadir
point or a point that is slightly worse in all objectives has been founded
theoretically for the case of the number of points going to infinity.
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All results concerning the optimal µ-distributions and the choice of the
reference point have been applied to test problems of the ZDT, DTLZ, and
WFG test problem suites.

The author beliefs the results presented in this chapter are important for
several reasons. On the one hand, several previous beliefs were disproved
concerning the bias of the hypervolume indicator and the choice of the
reference point to obtain the extremes of the front. On the other hand,
the results on optimal µ-distributions are highly useful in performance as-
sessment if the hypervolume indicator is used as a quality measure. For
the first time, approximations of optimal µ-distributions for finite µ allow
to compare the outcome of indicator-based evolutionary algorithms to the
actual optimization goal. Moreover, the actual hypervolume indicator of
optimal µ-distributions (or the provided approximations) offers a way to
interpret the obtained hypervolume indicator values in an absolute fashion
as the hypervolume of an optimal µ-distribution is a better estimate of the
best achievable hypervolume than the hypervolume of the entire Pareto
front. Last, the presented results for the weighted hypervolume indicator
also provide a basis for a better understanding of how to articulate user pref-
erences with the weighted hypervolume indicator in terms of the question
on how to choose the weight function in practice. This knowledge will be
used in Chapter , where an algorithm incorporating user preference using
the weighted hypervolume is proposed.






HypE: An Algorithm
for Multiobjective Search
by Sampling the Hypervolume

In the first two chapters of this thesis, the main focus was on the theoretical
properties of the hypervolume indicator. Thereby, various desirable features
of the indicator were observed:

. The hypervolume indicator induces a refinement of the Pareto dominance
relation, hence enables to transform a multiobjective problem into a
single-objective one, see Chapter .

. An unlimited variety of user preferences can be translated to a corre-
sponding weighted hypervolume indicator, where

. the optimal set for a given weight function and Pareto front can be
described in a concise way in terms of a density function, see Chapter .
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In this and the following chapters, these properties are put to practice. To
this end, a versatile Hypervolume Estimation Algorithm for Multiobjec-
tive Optimization (HypE) is proposed; thereby, specific features addressed
include the incorporation of user preference, and the consideration of ro-
bustness issues. In this chapter, the algorithm is derived for the unweighted
hypervolume; while Chapter  extends the algorithm to the weighted hyper-
volume indicator to incorporate user preference; and Chapter  proposes an
extended definition of the hypervolume indicator—and its implementation
into the search algorithm HypE—to incorporate robustness issues.

As pointed out in Chapter , the computational effort required for hyper-
volume calculation increases exponentially with the number of objectives
(unless P = NP), cf. Bringmann and Friedrich []. This has so far pre-
vented to fully exploit the potential of this indicator; current hypervolume-
based search algorithms such as SMS-MOEA [] or MO-CMA-ES [] are
limited to problems with only a few objectives. HypE deals with this prob-
lem by approximating the hypervolume, and is also applicable to problems
involving many objectives, for instance more than ten objectives.

First, Section . gives some preliminary considerations as to how hyper-
volume-based algorithms work by stating the Regular Hypervolume-based
Algorithm (RHV). In this chapter, and generally in this thesis, the design
of mutation and crossover operators is thereby not addressed as the hyper-
volume is not used in this context; instead established operators like SBX
crossover and variable-wise polynomial mutation are used [].

For the case of RHV the basic idea of Monte Carlo sampling is illustrated to
approximate the fitness assignment scheme. As a result, a novel Sampling-
based Hypervolume-oriented Algorithm (SHV) is presented, which has been
developed by the author and colleagues and which is a predecessor of HypE.
SHV serves (a) as a reference algorithm in the experimental comparisons,
and (b) to demonstrate three issues, which are addressed by an advanced
fitness measure shown in Section .. Section . then illustrates, how to
approximate this novel fitness measure. Finally, Section . proposes HypE,
Except for the bridge problem presented in Section E.
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building on the new hypervolume-based fitness measure and the correspond-
ing approximation procedure. Comprehensive experiments in Section .
conclude the chapter, comparing HypE to RHV and SHV respectively, and
to existing multiobjective evolutionary algorithms.

. · Preliminary Considerations

This section first illustrates the prevalent mode of operation of hypervol-
ume-based optimization algorithms on the basis of the Regular Hyper-
volume-based Algorithm (RHV). Next, a methodology based on Monte
Carlo sampling is shown for RHV, the Sampling-based Hypervolume-orien-
ted Algorithm (SHV). This algorithms was a first approach by the author
and colleagues to make the hypervolume indicator applicable to problems
with many objectives. It has been published in [], where the algorithm
has been discussed more thoroughly. In this thesis, SHV mainly serves to
illustrate the principles of sampling, and the difficulties thereby encoun-
tered—revealed in the third part of this section. Building on the results
and principles of SHV, Sections . and following then propose the more
advanced HypE.

.. ·General Functioning of Hypervolume-Based Optimization

As already mentioned in Chapter , many algorithms use the hypervolume
indicator as underlying (set-)preference for search [, , , , , ].

The main field of application of the hypervolume in general (as is the case in
the above algorithms) is environmental selection which is—from a set-based
perspective—the heuristic generation of the best possible follow up set from
the current set and the offspring set generated therefrom. Actually, the Set
Preference Algorithm for Multiobjective Optimization (SPAM) outlined in
Algorithm  on page  can be used in this context. In the following, one
variant of the heuristic set mutation (Line  in Algorithm ) is shown here
specific to the hypervolume-based set preference. It is a special case of the
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: generate initial set P of size α, i.e., randomly choose B ∈ Ψ=µ and set P ← B
: while termination criterion not fulfilled do
: select p1, . . . , pµ ∈ P parents from P (mating selection)
: generate r1, . . . , rλ ∈ X offspring from pi by crossover and mutation
: P ′ ← P ∪ {r1, . . . , rk} (merge offspring a parent population)
: determine P ′mp

i , 1 ≤ i ≤ l of P ′ according to Eq. . (non-dom. sorting)
: P ′′ = {}
: s← 1
: while |P ′′|+ |P ′mp

s | ≤ α do
: P ′′ ← P ′′ ∪ P ′mp

s

: s← s + 1

: A← P ′
s

: while |A|+ |P ′′| > α do
: for all a ∈ A do
: da ← IH(A, R)− IH(A \ {a}, R)

: choose a ∈ A with da = mina∈A da

: A← A \ {a}
: P ′′ ← P ′′ ∪A

: return P ′′

Algorithm  Regular Hypervolume-based Algorithm (RHV) (iterative version). Aster creating
an offspring population and merging it with the parent population (Lines  to ), environmental
selection takes place: Lines  to  perform selection according to non-dominated sorting,
and Lines  to  implement the greedy procedure to fill the remaining places.

algorithm presented in Zitzler et al. [], where indicators in general are
considered.

For the specific setting of using the hypervolume indicator, the algorithm
is here referred to as Regular Hypervolume-based Algorithm (RHV). Algo-
rithm  outlines the steps performed by RHV: first, an initial population of
α individuals is generated corresponding to potential solutions, see Line .
Thereafter, µ parent individuals are selected (Line ) which then generate λ

offspring individuals (Line ) by means of mutation and crossover. Mating
selection is performed by selecting individuals uniformly at random from P .

After having generated offspring individuals, environmental selection aims
at selecting the most promising α solutions from the multiset-union of parent
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blem (HSSP) is defined as the problem of finding a subset A′ ⊆ A with
|A′| = |A| − k such that the overall hypervolume loss is minimum, i.e.,

IH(A′, R) = max
A′′⊆A

|A′′|=|A|−k

IH(A′′, R)

If k = 1, then the HSSP can be solved exactly by removing that solution
a from the population P with the lowest value λ(H1(a, P, R)); this is the
principle implemented in most hypervolume-based Multiobjective Evolutio-
nary Algorithms (MOEAs) which consider one offspring per generation,
e.g., [, , ]. However, it has been recently shown that exchanging
only one solution in the population like in steady state MOEAs (k = 1)
may lead to premature convergence to a local optimum in the hypervolume
landscape []. This problem can be avoided when generating at least as
many offspring as parent pairs are available, i.e., k ≥ |P |/2.

For arbitrary k, the solution to the HSSP can be found in polynomial time
for biobjective problems, using the principles of dynamic programming, see
Appendix D. on page . However, the Bellman equation used by this
approach no longer holds for  and more objectives. Whether polynomial
time algorithms for the HSSP exist is subject to current research, however,
due to the similar NP-hard Maximum Coverage Problem [] the author
assumes that the HSSP is indeed NP-hard.

For this reason, the following greedy procedure is often applied to the HSSP.
Starting with the set A′ = A, one after another solution x ∈ A′ is removed
from A′, until the desired size |A′| = |A| − k is reached. In each step the
solution is thereby removed, which causes the smallest loss in hypervolume
IH(A′, R) − IH(A′ \ {x}, R), also denoted the hypervolume contribution of
solution a (see Definition . on page ).

From Eq. . follows, that dominated solutions have no hypervolume con-
tribution (λ(CA(x)) = 0), for which reason the hypervolume indicator
is usually combined with non-dominated sorting (see Eq. .), e.g., in
[, , , ], or is only applied to Pareto-optimal solutions [, ].
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Please note, that the term “hypervolume contribution” is used interchange-
ably to refer to both CA(x) and λ(CA(x))—the same way the term “hyper-
volume” is often used to refer to the actual indicator value.

In practice, two versions of the greedy procedure exist:

. Iterative: Each time, the worst solution xw ∈ A is removed, the hypervol-
ume contributions are recalculated with respect to the new set A \ {x}

. One shot: The hypervolume contributions are calculated only at the
beginning; and the k worst solutions are removed in one step.

Best results are usually obtained using the iterative approach, as the re-
evaluation increases the quality of the generated approximation. In contrast,
the one-shot approach substantially reduces the computation effort, but the
quality of the resulting subset is lower. In the context of density-based
MOEAs, the first approach is for instance used in the modified Strength
Pareto Evolutionary Algorithm (SPEA) [], while the second is employed
in the Nondominated Sorting Genetic Algorithm II (NSGA-II) [].

Most hypervolume-based algorithms are similar to RHV, see Algorithm , in
terms of both environmental selection and mating selection: The Multiob-
jective Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES)
of [] uses the same greedy procedure for environmental selection, but uses
a different mating selection scheme, where each individual is chosen exactly
once to generate λ offspring. The s-Metric Selection Multiobjective Evo-
lutionary Algorithm (SMS-MOEA) by Emmerich et al. [] and the s-Metric
Archiving approach by Knowles and Corne [] are steady state EAs, i.e., a
(µ+1) strategy is used where only one offspring individual being generated,
see Definition . on page . While in [] always the solution with the
smallest contribution is removed, in [] the offspring individual is compared
with an arbitrary non-dominated solution. The SMS-MOEA uses random
mating selection, while the s-Metric Archiving focuses entirely on environ-
mental selection and does not address the generation of new individuals.
The approach in [] uses the hypervolume contributions as intra-ranking
procedure within SPEA [].
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On the other hand, HypE presented from Section . onward, is different
with respect to both environmental and mating selection: both are based on
an extended concept of hypervolume contribution, which will be presented
in Section ..

All algorithms have a common disadvantage: Bringmann and Friedrich []
have shown that calculating the hypervolume contributions is ♯P-hard like
the calculation of the hypervolume of the entire set is. Therefore, hyper-
volume-based algorithms are not applicable to problems involving a large
number of objectives. To remedy this problem, an approximation of the
contributions as used by Algorithm  needs to be performed. The next sec-
tion proposes such a methodology to estimate hypervolume contributions
of solutions by means of Monte Carlo simulation.

.. ·The Sampling-Based Hypervolume-Oriented Algorithm

Monte Carlo sampling is a well-known and easy-to-use approach to solve
problems numerically by using random numbers. Monte Carlo sampling
is used within several application areas such as atomic physics or finance.
However, its most popular field of application is the computation of integrals
[]. Using Monte Carlo methods to evaluate the hypervolume indicator is
not new. Everson et al. [] for instance sampled the standard hypervolume
for performance assessment.

In order to sample the contribution of a decision vector x, a sampling space
Sx ⊆ Z has to be defined first with the following properties: (i) the hyper-
volume of S can easily be computed, (ii) samples from the space S can be
generated fast, and (iii) S is a superset of the domains CA(x) = Hi(a, P, R)

the hypervolumes of which one would like to approximate, i.e., CA(x) ⊆ Sx.
Thereafter, m samples si ∈ Sx are drawn at random from the sampling
space, where each element of Sx is selected equally likely. Given {s1, . . . , sm}
the contribution is then approximated by:

λ̂(CA(x)) := λ(Sx)

∣∣{si|si ∈ CA(x)
}∣∣

m
:= λ(Sx)

H

m
(.)

where H denotes the number of samples si in CA(x) called hits.
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Since the probability p of a sample si being a hit is independent and inden-
tically Bernoulli distributed, the estimate λ̂(CA(x)) converges to the true
value with 1/

√
p/(1− p) ·m. The bigger the probability of a hit p thereby

is, the faster the convergence. Hence, it is crucial to choose the sampling
space as small as possible while still guaranteeing CA(x) ⊆ Sx in order to
maximize the number of hits, and minimize the number of samples needed
to obtain a reliable estimate. In the following, a procedure to find tight
sampling spaces S is addressed. To simplify drawing of samples, the shape
Sx is restricted to hyperrectangles:

Definition .: Let x ∈ A be a solution whose hypervolume contribution is to
be estimated. Then the sampling hyperrectangle Sr(x) of x is given by

Sr(x) := {z ∈ Z | f(x) 6 z 6 u} (.)

where u = (u1, . . . , ud) is

ui = min
{{

fi(x
′) | x′ ∈ A \x ∧ x′ ≼�i x

}
,{

r′ = (r′
1, . . . , r′

d) ∈ R | f(x) 6 r′}} (.)

with x ≼�i y :⇔ ∀1 ≤ j ≤ d, j ̸= i : fj(x) ≤ fj(y) denoting weak dominance
in all but the ith objective and where R denotes the reference set.

To simplify notation, in the following let x0, . . . , xk ∈ A denote the decision
vectors with corresponding objective vectors z(i) := f(xi). Furthermore, let
Sr

i := Sr(xi) and λ(Ci) := λ(CA(xi)) denote the sampling hyperrectangles
and contributions respectively.

To illustrate the procedure to find the sampling hyperrectangle according
to Definition ., the -dimensional hypervolume contribution of solution
x0 with objective vector z(0) = (0, 0, 0) is shown in Figure ., along with
the remaining eleven objective vectors. According to Eq. ., the lower
vertex of Sr

0 corresponds to f(x0) = z(0); the first coordinate u1 of the
upper vertex is u1 = min{z(1)

1 , z(2)

1 , r1} = 24, the second is given by u2 =

min{z(10)

2 , z(11)

2 , r2} = 16, and the third is given by u3 = min{z(4)

3 , z(5)

3 , r3} =
9 respectively. Hence, the sampling hyperrectangle of x0 is Sr

0 = [0, 24] ×



 Chapter . HypE: Multiobjective Search by Sampling the Hypervolume

z

(7)z

(9)z

(10)z

(8)z

(11)z

(2)z

(1)z

(5)z(4)z

(6)z
(24, -6, -5)

(26, 2, -6)

(12, -3, 5)
x y

z

(18, 10, -4)

(0, -2, 9)

(-2, -2, 10)

(0)z
(0,0,0)

(-5, 6, 6)

(-6, 14, 2)

(-4, 16, -9)

(-6, 18, -1)

z
(12, -3, 5) (0)(z

(0,0,0)

z

u,

(6)z
(18, 10, -

u(24, 16, 9)

(3)

(-2, 2, 8)

Figure . Contribution of z() (shaded polytope) in a three dimensional objective space, given
eleven other incomparable objective vectors z() to z(). The lower vertex of the sampling
hyperrectangle (transparent box) is given by z(); the upper vertex by z() (x-value), z() (y-value),
and z() (z-value).

[0, 16]× [0, 9] (transparent box in Figure .). As can be observed from Fig-
ure ., the resulting sampling space is the smallest possible hyperrectangle
containing the complete contribution. The following theorem shows that
this holds in general, i.e., Definition . gives the optimal sampling space
of hyperrectangular shape. The proof is given in Appendix on page .

Theorem .: The sampling hyperrectangle Sr(x) according to Definition .
is the minimum bounding box of the hypervolume contribution CA(x); this
means (i) Sr(x) contains all points that are solely dominated by x, i.e.,
CA(x) ⊆ Sr(x) and (ii) there exists no other hyperrectangle S̃r(x) that
contains the entire contribution of x and at the same time has a smaller
volume, i.e., CA(x) ⊆ S̃r(x)⇒ Sr(x) ⊆ S̃r(x).

Given a procedure to determine for each solution x a tight sampling space
Sr(x) (Eq. .), and given an equation to estimate the contribution CA(x)

from samples drawn from Sr(x) (Eq. .), the question remains, how many
samples mi should be drawn for each solution xi. The straightforward ap-
proach is to use the same predefined number of samples m for each solution.
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However, the Sampling-based Hypervolume-oriented Algorithm (SHV) uses
an adaptive scheme to reduce the total number of samples. The algorithm
has been published by the author and colleagues in []. In this thesis, the
focus is on HypE, the successor of SHV. Therefore, the remaining descrip-
tion of the adaptive sampling strategy of SHV is moved to Appendix D.
on page .

As the following section shows, SHV has a few shortcomings which will be
addressed in Sections . et seq.

.. ·Weaknesses of SHV

Sampling Boxes Extend to Reference Set
As Eq. . and Theorem . reveal, the sampling hyperrectangle Sr of a
solution x extends in dimension i to the reference set, if no solution y exists
that is better than x in all but the ith objective. Considering the objective to
be independent of each other, the probability decreases that such a solution
y exists which is better than x in d− 1 out of d objectives. In other words,
with increasing number of objectives, the sampling hyperrectangle Sr will
more and more frequently extend up to the reference set. This is also
demonstrated by the following example.

Example .: Consider  solutions A = {x1, . . . , x50} whose objective values
are randomly uniformly distributed on a unit simplex, i.e., ∑d

i=1 fi(xj) = 1

∀xj ∈ A, and let the reference set be R = {r} with r = {2, 2, . . . , 2}. For
different numbers of objectives d,   Pareto-front approximations A are
generated respectively. Then, for each front A and every solution xj ∈ A,
the volume of the corresponding hyperrectangle λ(Sr

j ) is calculated and
compared to the volume of the sampling hyperrectangle Sr

max(xj) where u

in Eq. . is set to the reference point r. In Figure ., the mean ratio of
λ(Sr

j ) to λ(Sr
max(xj)), as well as a histogram thereof is plotted against the

number of objectives d. For d larger or equal , the sampling hyperrectan-
gles, and hence the contributions of the considered solution, always extend
up to the reference point in all objectives (giving a ratio of 1). For as little
as 6 objectives already less than % of the hyperrectangles volume is saved
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Figure . Mean ratio between the volume
of the tight sampling space Sr and the sam-
pling space extending to the reference point
Srmax against the number of objectives. The
gray rectangles represent a histogram of the
aforementioned ratio. As the number of ob-
jectives increases, the mean ratio converges
to one, meaning the sampling boxes all extend
to the reference point. 2 4 6 8 10 12
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using the tightest possible choice of u (Eq. .) in comparison to setting u

to the reference point. ◦

The previous example shows, that already for decent numbers of objectives
d ≥ 6, i.e., choices of d where the exact calculation of the hypervolume
just starts to get too expensive, the hypervolume contributions mostly ex-
tend all up to the reference point. Hence, instead of sampling each so-
lution separately within its own sampling hyperrectangle, a more efficient
procedure would be to sample within the whole objective space up to the
maximum of the reference set and thereby approximate all contributions in
one pass. The samples saved sampling all contributions together instead of
individually, most likely compensate for the (slightly) oversized sampling
space—even when using an adaptive scheme as employed by SHV presented
in Appendix D..

Contributions Increasingly Hard To Sample
Within the same setting used in Example ., the number of samples dom-
inated by only the considered solution has been counted, as well as the
number of times l − 1 other solutions dominated the sample. Table .
reports the result for different numbers of objectives. As the number of
objectives d increases, less and less samples are dominated by just the con-
sidered solutions. In other words, the number of hits decreases. The drop
is very substantial at the beginning, and seems to flatten for more than 
objectives. The same happens to the number of samples dominated by l = 2
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Table . Number of sam-
ples out of   dom-
inated by , , , , ,
, and  or more so-
lutions against the num-
ber of objectives d. As d
increases, the number of
samples dominated by just
the considered solution, i.e.,
the number of samples giv-
ing the contribution of the
solution decreases.

d       ≥ 

       
       
       
       
       
       
       
       
       
       
       

or more solutions, however, the number of samples is generally larger the
more solutions l are considered.

Estimating the contribution of a solution hence becomes more and more
difficult with increasing number of objectives, which affects the accuracy
of the estimate, see discussion following Eq. .. It would therefore be
beneficial to also use the samples dominated by 2, 3 or even more solutions.

In the following, a novel Hypervolume Estimation Algorithm for Multiob-
jective Optimization (HypE) is presented, that uses the entire objective
space to draw samples. Additionally, both its environmental and mating
selection step rely on a new fitness assignment scheme based not only on
the hypervolume contribution as stated in Definition . on page , but
also on parts of the objective space dominated by more than one solution.

A New Advanced Fitness Assignment Scheme
Using the contributions CA(x) as the fitness measure has two disadvantages:
(i) the fitness is not suitable for mating selection. For instance, given two
solutions x1 and x2 for which f(x1) = f(x2) holds, both have no contribu-
tion, although they might be valuable parents; the same holds for dominated
solutions. (ii) the contribution constitutes the loss when removing one solu-
tion. An advanced fitness scheme (as presented in Section ..) could also
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consider the hypervolume lost by removing multiple solutions to improve
the greedy procedure in Algorithm .

The following advanced fitness assignment scheme addresses the three issues
outlined in this section, which is thereafter employed by HypE.

. · Hypervolume-Based Fitness Assignment

In the following, a generalized fitness assignment strategy is proposed that
takes into account the entire objective space weakly dominated by a popu-
lation, addressing the issue raised in Section ... First, a basic scheme is
provided for mating selection and then an extension is presented for environ-
mental selection. Afterwards, it is briefly discussed how the fitness values
can be computed exactly using a slightly modified hypervolume calculation
algorithm.

.. ·Basic Scheme for Mating Selection

To begin with, the hypervolume H(A, R) of a set of solutionsA and reference
set R is further split into partitions H(T, A, R), each associated with a
specific subset T ⊆ A:

H(T, A, R) := [
∩
t∈T

H({t}, R)] \ [
∪

a∈A\T

H({a}, R)]

The set H(T, A, R) ⊆ Z represents the portion of the objective space that is
jointly weakly dominated by the solutions in T and not weakly dominated
by any other solution in A. It holds∪̇

T ⊆A

H(T, A, R) = H(A, R) (.)

which is illustrated in Figure .(a). That the partitions are disjoint can
be easily shown: Assume that there are two non-identical subsets S1, S2 of
A for which H(S1, A, R) ∩H(S2, A, R) ̸= ∅; since the sets are not identical,
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there exists without loss of generality an element a ∈ S1 which is not con-
tained in S2; from the above definition follows that H({a}, R) ⊇ H(S1, A, R)

and therefore H({a}, R) ∩H(S2, A, R) ̸= ∅; the latter statement leads to a
contradiction since H({a}, R) cannot be part of H(S2, A, R) when a ̸∈ S2.

In practice, it is infeasible to determine all distinct H(T, A, R) due to com-
binatorial explosion. Instead, a more compact splitting of the dominated
objective space will be considered that refers to single solutions:

Hi(a, A, R) :=
∪

T ⊆A
a∈T
|T |=i

H(T, A, R) (.)

According to this definition, Hi(a, A, R) stands for the portion of the objec-
tive space that is jointly and solely weakly dominated by a and any i − 1

further solutions from A, see Figure .(b). Note that the sets H1(a, A, R),
H2(a, A, R), . . ., H|A|(a, A, R) are disjoint for a given a ∈ A, i.e., ∪̇1≤i≤|A|
Hi(a, A, R) = H({a}, R), while the sets Hi(a, A, R) and Hi(b, A, R) may
be overlapping for fixed i and different solutions a, b ∈ A. This slightly
different notion has reduced the number of subspaces to be considered from
2|A| for H(T, A, R) to |A|2 for Hi(a, A, R).

Now, given an arbitrary population P ∈ Ψ one obtains for each solution a

contained in P a vector (λ(H1(a, P, R)), λ(H2(a, P, R)), . . . , λ(H|P |(a, P, R)))

of hypervolume contributions. These vectors can be used to assign fitness
values to solutions; Subsection .. describes how the corresponding values
λ(Hi(a, A, R)) can be computed. While most hypervolume-based search al-
gorithms only take the first components, i.e., λ(H1(a, P, R)), into account,
here the following scheme is proposed to aggregate the hypervolume contri-
butions into a single scalar value.

Definition .: Let A ∈ Ψ and R ⊂ Z. Then the function Ih with

Ih(a, A, R) :=

|A|∑
i=1

1

i
λ(Hi(a, A, R))

gives for each solution a ∈ A the hypervolume that can be attributed to a

with regard to the overall hypervolume IH(A, R).
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Figure . Illustration of the notions of H(A,R), H(T,A,R), and Hi(a,A,R) in the objective space
for a Pareto set approximation A = {a,b,c,d} and reference set R = {r}.

Figure . Shows for an exam-
ple population the selection prob-
abilities for the population mem-
bers (lest). As one can see on
the right, the overall selection
probability for the shaded area
does not change when domi-
nated solutions are added to the
population.
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The motivation behind this definition is simple: the hypervolume contribu-
tion of each partition H(T, A, R) is shared equally among the dominating
solutions t ∈ T . That means the portion of Z solely weakly dominated by
a specific solution a is fully attributed to a, the portion of Z that a weakly
dominates together with another solution b is attributed half to a and so
forth—the principle is illustrated in Figure .(a). Thereby, the overall
hypervolume is distributed among the distinct solutions according to their
hypervolume contributions as the following theorem shows (the proof can
be found in Appendix D. on page ). Note that this scheme does not
require that the solutions of the considered Pareto set approximation A

are mutually non-dominating; it applies to non-dominated and dominated
solutions alike.
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Theorem .: Let A ∈ Ψ and R ⊂ Z. Then it holds

IH(A, R) =
∑
a∈A

Ih(a, A, R)

This aggregation method has some desirable properties that make it well
suited to mating selection where the fitness Fa of a population member
a ∈ P is Fa = Ih(a, P, R) and the corresponding selection probability pa

equals Fa/IH(P, R). As Figure . demonstrates, the accumulated selec-
tion probability remains the same for any subspace H({a}, R) with a ∈ P ,
independently of how many individuals b ∈ P are mapped to H({a}, R)

and how the individuals are located within H({a}, R). This can be formally
stated in the next theorem; the proof can be found in Appendix D. on
page .

Theorem .: Let A ∈ Ψ and R ⊂ Z. For every a ∈ A and all multisets
B1, B2 ∈ Ψ with {a} 4 B1 and {a} 4 B2 holds∑

b1∈{a}∪B1

Ih(b1, {a} ∪B1, R) =
∑

b2∈{a}∪B2

Ih(b2, {a} ∪B2, R)

Since the selection probability per subspace is constant as long as the overall
hypervolume value does not change, adding dominated solutions to the pop-
ulation leads to a redistribution of the selection probabilities and thereby
implements a natural niching mechanism. Another advantage of this fitness
assignment scheme is that it takes all hypervolume contributions Hi(a, P, R)

for 1 ≤ i ≤ |P | into account. As will be discussed in Section ., this allows
to more accurately estimate the ranking of the individuals according to their
fitness values when using Monte Carlo simulation.

In order to study the usefulness of this fitness assignment strategy, the fol-
lowing experiment is considered. A standard evolutionary algorithm imple-
menting pure non-dominated sorting fitness is applied to a selected test func-
tion (biobjective WFG [] using the setting as described in Section .)
and run for  generations. Then, mating selection is carried out on the
resulting population, i.e., the individuals are reevaluated using the fitness
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Table . Comparison of three fitness as-
signment schemes: () constant fitness, ()
non-dominated sorting plus λ(H(a, P, R)),
and () the proposed method. Each value
gives the percentage of cases where the
method associated with that row yields a
higher hypervolume value than the method
associated with the corresponding column.

versus const. () std. () new ()

const. () - % %

std. () % - %

new () % % -

scheme under consideration and offspring are generated employing binary
tournament selection with replacement and corresponding variation opera-
tors. The hypervolume of the (multi)set of offspring is taken as an indicator
for the effectiveness of the fitness assignment scheme. By comparing the re-
sulting hypervolume values for different strategies (constant fitness leading
to uniform selection, non-dominated sorting plus λ(H1(a, P, R)), and the
proposed fitness according to Definition .) and for  repetitions of this
experiment, the influence of the fitness assignment strategy on the mating
selection process is investigated.

The Quade test, a modification of Friedman’s test which has more power
when comparing few treatments [], reveals that there are significant differ-
ences in the quality of the generated offspring populations at a signficance
level of 0.01 (test statistics: T3 = 12.2). Performing post-hoc pairwise
comparisons following Conover [] using the same significance level as in
the Quade test provides evidence that the proposed fitness strategy can
be advantageous over the other two strategies, cf. Table .; in the con-
sidered setting, the hypervolume values achieved are significantly better.
Comparing the standard hypervolume-based fitness with constant fitness,
the former outperforms the latter significantly. Nevertheless, also the re-
quired computation resources need to be taken into account. That means
in practice that the advantage over uniform selection may diminish when
fitness computation becomes expensive. This aspect will be investigated in
Section ..

The next section will extend and generalize the fitness assignment scheme
with regard to the environmental selection phase.
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Definition .: Let A ∈ Ψ, R ⊂ Z, and k ∈ {0, 1, . . . , |A|}. Then the function
Ik

h with

Ik
h(a, A, R) :=

1

|T |
∑
T ∈T

∑
U⊆T
a∈T

1

|T |
λ
(
H(T, A, R)

) (.)

where T = {T ⊆ A ; a ∈ T ∧ |T | = k} contains all subsets of A that
include a and have cardinality k gives for each solution a ∈ A the expected
hypervolume loss that can be attributed to a when a and k − 1 uniformly
randomly chosen solutions from A are removed from A.

Notice that I1h(a, A, R) = λ(H1(a, A, R)) and I
|A|
h (a, A, R) = Ih(a, A, R),

i.e., this modified scheme can be regarded as a generalization of the scheme
presented in Definition . and the commonly used fitness assignment strat-
egy for hypervolume-based search [, , , ]. The next theorem shows
how to calculate Ik

h(a, A, R) without averaging over all subsets T ∈ T ; the
proof can be found in Appendix D. on page .

Theorem .: Let A ∈ Ψ, R ⊂ Z, and k ∈ {0, 1, . . . , |A|}. Then it holds

Ik
h(a, A, R) =

k∑
i=1

αi

i
λ(Hi(a, A, R)) where αi :=

i−1∏
j=1

k − j

|A| − j

Next, the effectiveness of Ik
h(a, A, R) is studied for approximating the op-

timal HSSP solution. To this end, assume that for the iterative greedy
strategy (l = 1) in the first round the values Ik

h(a, A, R) are considered, in
the second round the values Ik−1

h (a, A, R), and so forth; each time an indi-
vidual assigned the lowest value is selected for removal. For the one-step
greedy method (l = k), only the Ik

h(a, A, R) values are considered.

Table . provides a comparison of the different techniques for  
randomly chosen Pareto set approximations A ∈ Ψ containing ten incom-
parable solutions, where the ten points are randomly distributed on a three
dimensional unit simplex, i.e., a three objective scenario is considered. The
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Table . Comparison of greedy strategies for the HSSP (iterative vs. one shot) using the
new (Ikh) and the standard hypervolume fitness (I


h); as a reference, purely random deletions

are considered as well. The first column gives the portion of cases an optimal subset was
generated; the second column provides the average difference in hypervolume between opti-
mal and generated subset. The last two columns reflect the direct comparisons between the
two fitness schemes for each greedy approach (iterative, one shot) separately; they give the
percentages of cases where the corresponding method was better than or equal to the other
one.

greedy strategy optimum found distance better equal

iterative with Ikh . % . - . % . %
iterative with Ih . % . - . % . %

one shot with Ikh . % . - . % . %
one shot with Ih . % . - . % . %

uniformly random . %  -

parameter k was set to 5, so that half of the solutions needed to be re-
moved. The relatively small numbers were chosen to allow to compute
the optimal subsets by enumeration. Thereby, the maximum hypervolume
values achievable could be determined.

The comparison reveals that the new fitness assignment scheme is in the
considered scenario more effective in approximating HSSP than the standard
scheme. The mean relative distance (see Table .) to the optimal solution
is about % smaller than the distance achieved using I1h in the iterative
case and about % smaller in the one shot case. Furthermore, the optimum
was found much more often in comparison to the standard fitness: 34%more
often for the iterative approach and 497% in the one shot scenario.

Finally, note that the proposed evaluation function Ik
h will be combined

with non-dominated sorting for environmental selection as for RHV, cf.
Section .., similarly to [, , , , ]. One reason is computation
time: with non-dominated sorting the worst dominated solutions can be
removed quickly without invoking the hypervolume calculation algorithm;
this advantage mainly applies to low-dimensional problems and to the early
stage of the search process. Another reason is that the full benefits of
the scheme proposed in Definition . can be exploited when the Pareto
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: procedure computeHypervolume(P , R, k)
: F ←

∪
a∈P {(a, 0)}

: return doSlicing(F ,R,k,d,1,(∞,∞, . . . ,∞));

Algorithm  Hypervolume-based Fitness Value Computation. Requires a population P ∈ ψ, a
reference set R ⊆ Z, and the fitness parameter k ∈ N.

set approximation A under consideration only contains incomparable and
indifferent solutions; otherwise, it cannot be guaranteed that non-dominated
solutions are preferred over dominated ones.

.. ·Exact Calculation of Ikh
This subsection tackles the question of how to calculate the fitness values
for a given population P ∈ Ψ. An algorithm is presented that determines
the values Ik

h(a, P, R) for all elements a ∈ P and a fixed k—in the case of
mating selection k equals |P |, in the case of environmental selection k gives
the number of solutions to be removed from P . It operates according to
the ‘hypervolume by slicing objectives’ principle [, , ], but differs
from existing methods in that it allows: (i) to consider a set R of reference
points and (ii) to compute all fitness values, e.g., the I1h(a, P, R) values for
k = 1, in parallel for any number of objectives instead of subsequently as in
the work of Beume et al. []. Although it looks at all partitions H(T, P, R)

with T ⊆ P explicitly, the worst-case runtime complexity is not affected
by this; it is of order O(|P |d + d|P | log |P |) assuming that sorting of the
solutions in all dimensions is carried out as a preprocessing step. Please
note, that faster hypervolume calculation algorithms exists, most notably
the algorithm by Beume and Rudolph []. Clearly, the algorithm is only
feasible for a low number of objectives, and the next section discusses how
the fitness values can be estimated using Monte Carlo methods.

Details of the procedure are given by Algorithms  and . Algorithm  just
provides the top level call to the recursive function doSlicing and returns a
Adjusting this method to the fitness measure Ikh is not straightforward, hence only the extension of the basic hyp-
ervolume by slicing objectives approach is demonstrated here. A substantial speedup is expected when employing
a more elaborate algorithm.
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fitness assignment F , a multiset containing for each a ∈ P a corresponding
pair (a, v) where v is the fitness value. Note that d at Line  denotes the
number of objectives. Algorithm  recursively cuts the dominated space
into hyperrectangles and returns a (partial) fitness assignment F ′. At each
recursion level, a scan is performed along a specific objective—given by
i—with u∗ representing the current scan position. The vector (z1, . . . , zd)

contains for all dimensions the scan positions, and at each invocation of
doSlicing solutions (more precisely: their objective vectors) and reference
points are filtered out according to these scan positions (Lines  and )
where also dominated solutions may be selected in contrast to [, , ].
Furthermore, the partial volume V is updated before recursively invoking
Algorithm  based on the distance to the next scan position. At the lowest
recursion level (i = 0), the variable V gives the hypervolume of the partition
H(A, P, R), i.e., V = λ(H(A, P, R)) where A stands for the remaining solu-
tions fulfilling the bounds given by the vector (z1, . . . , zd)—AU contains the
objective vectors corresponding to A, cf. Line . Since the fitness according
to Definition . is additive with respect to the partitions, for each a ∈ A

the partial fitness value v can be updated by adding α|AU |
|AU | V . Note that the

population is a multiset, i.e., it may contain indifferent solutions or even
duplicates; therefore, all the other sets in the algorithms are multisets.

The following example illustrates the working principle of the hypervolume
computation.

Example .: Consider the three-objective scenario depicted in Figure .
where the population contains four solutions a, b, c, d the objective vec-
tors of which are f(a) = (−10,−3,−2), f(b) = (−8,−1,−8), f(c) =

(−6,−8,−10), f(d) = (−4,−5,−11) and the reference set includes two
points r = (−2, 0, 0), s = (0,−3,−4). Furthermore, let the parameter k be
2.

In the first call of doSlicing, it holds i = 3 and U contains all objective
vectors associated with the population and all reference points. The fol-
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: procedure doSlicing(F , R, k, i, V , (z1, . . . , zd))
: AU ←

∪
(a,v)∈F, ∀i<j≤d: fj(a)≤zj

{f(a)} (filter out relevant solutions...)
: UR←

∪
(r1,...,rd)∈R, ∀i<j≤d: rj≥zj

{(r1, . . . , rd)} (... and reference points)
: if i = 0 ∧UR ̸= ∅ then (end of recursion reached)
: α←

∏|AU |−1
j=1 (k − j)/(|F| − j)

: F ′ ← ∅
: for all (a, v) ∈ F do (update hypervolumes of filtered solutions)
: if ∀1 ≤ j ≤ d : fj(a) ≤ zj then
: F ′ ← F ′ ∪ {(a, v + α

|AU | V )}
: else
: F ′ ← F ′ ∪ {(a, v)}
: else if i > 0 then (recursion continues)
: F ′ ← F
: U ← AU ∪UR
: while U ̸= ∅ do (scan current dimension in ascending order)
: u∗ ← min(u1,...,ud)∈U ui

: U ′ ← {(u1, . . . , ud) ∈ U |ui > u∗}
: if U ′ ̸= ∅ then
: V ′ = V ·

(
(min(u′

1,...,u′
d
)∈U ′ u′

i)− u∗
)

: F ′ ← doSlicing(F ′, R, k, i-1, V ′,(z1, . . . , zi−1, u∗, zi+1, . . . , zd) )
: U = U ′

: return F ′

Algorithm  Recursive Objective Space Partitioning. Requires the current fitness assignment
F , the reference set R⊆ Z, a fitness parameter k ∈ N, the recursion level i, the partial volume
V ∈ R, and the scan positions (z , . . ., zd) ∈ Rd

lowing representation shows U with its elements sorted in ascending order
according to their third vector components:

U =

f(d) : (−4,−5,−11) ↓
f(c) : (−6,−8,−10)
f(b) : (−8,−1,−8)

s : (−0,−3,−4)
f(a) : (−10,−3,−2)

r : (−2, 0, 0)
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u∗ f3(d) = −11 u∗ = f3(c) = −10

U {f(a), f(b), r, s} u∗ = f3(b) = −8

V � = 1 · (−4 − (−8)) = 4

(z1, z2, z3) = (∞, ∞, −8)

i = 2 U

U =

f(c) : (−6, −8, −10) ↓
f(d) : (−4, −5, −11)

s : (0, −3, −4)

f(b) : (−8, −1, −8)

r : (−2, 0, 0)
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Now, after three iterations of the loop at Line  with u∗ = f2(c) = −8,
u∗ = f2(d) = −5, and u∗ = s2 = −3, respectively, U is reduced in the
fourth iteration to {f(b), r} and u∗ is set to f2(b) = −1. As a result,
V ′ = 1 · 4 · (0 − (−1)) = 4 and (z1, z2, z3) = (∞,−1,−8) which are the
parameters for the next recursive invocation of doSlicing where U is set to:

U =

f(b) : (−8,−1,−8) ↓
f(c) : (−6,−8,−10)
f(d) : (−4,−5,−11)

r : (−2, 0, 0)

At this recursion level with i = 1, in the second iteration it holds u∗ =

f1(c) = −6 and V ′ = 1 · 4 · 1 · (−4 − (−6)) = 8. When calling doSlicing at
this stage, the last recursion level is reached (i = 0): First, α is computed
based on the population size n = 4, the number of individuals dominating
the hyperrectangle (|AU | = 2), and the fitness parameter k = 2, which
yields α = 1/3; then for b and c, the fitness values are increased by adding
α · V /|AU | = 1/3 · 8/2 = 4/3.

Applying this procedure to all slices at a particular recursion level identi-
fies all hyperrectangles which constitute the portion of the objective space
enclosed by the population and the reference set. ◦

. · Estimating Hypervolume Contributions Using Monte Carlo
Simulation

As outlined above, the computation of the proposed hypervolume-based fit-
ness scheme is that expensive that only problems with at maximum four or
five objectives are tractable within reasonable time limits. However, in the
context of randomized search heuristics one may argue that the exact fitness
values are not crucial and approximated values may be sufficient; further-
more, if using pure rank-based selection schemes, then only the resulting
order of the individuals matters. These considerations lead to the idea
of estimating the hypervolume contributions. To approximate the fitness
values according to Definition ., the Lebesgue measures of the domains
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Hi(a, P, R) need to be estimated where P ∈ Ψ is the population. Since these
domains are all integrable, their Lebesgue measure can be approximated by
means of Monte Carlo simulation as in the Sampling-based Hypervolume-
oriented Algorithm (SHV), see Section .. on page .

For this purpose, again a sampling space S ⊆ Z has to be defined. As out-
lined in Section .., sampling within an axis-aligned minimum bounding
box determined by the reference set makes sense, i.e.:

S := {(z1, . . . , zd) ∈ Z | ∀1 ≤ i ≤ d : li ≤ zi ≤ ui}

where

li := min
a∈P

fi(a) ui := max
(r1,...,rd)∈R

ri

for 1 ≤ i ≤ d. Hence, the volume V of the sampling space S is given by
V =

∏d
i=1max{0, ui − li}.

Now given S, sampling is carried out as for SHV by selecting m objective
vectors s1, . . . , sm from S uniformly at random. For each sj it is checked
whether it lies in any partition Hi(a, P, R) for 1 ≤ i ≤ k and a ∈ P . This
can be determined in two steps: first, it is verified that sj is ‘below’ the
reference set R, i.e., there exists r ∈ R that is dominated by sj ; second, it
is verified that the multiset A of those population members dominating sj

is not empty. If both conditions are fulfilled, then—given A—the sampling
point sj lies in all partitions Hi(a, P, R) where i = |A| and a ∈ A. This
situation will be denoted as a hit regarding the ith partition of a. If any of
the above two conditions is not fulfilled, then sj is called a miss. Let X

(i,a)
j

denote the corresponding random variable that is equal to 1 in case of a hit
of sj regarding the ith partition of a and 0 otherwise.

Based on the m sampling points, an estimate for λ(Hi(a, P, R)) is obtained
by simply counting the number of hits and multiplying the hit ratio with
the volume of the sampling box:

λ̂
(
Hi(a, P, R)

)
=

∑m
j=1 X

(i,a))
j

m
· V (.)
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This value approaches the exact value λ(Hi(a, P, R)) with increasing m by
the law of large numbers. Due to the linearity of the expectation operator,
the fitness scheme according to Eq. . can be approximated by replacing
the Lebesgue measure with the respective estimates given by Eq. .:

Îk
h(a, P, R) =

k∑
i=1

αi

i
·

∑m
j=1 X

(i,a))
j

m
V

 (.)

The details of the estimation procedure are described by Algorithm  which
returns a fitness assignment, i.e., for each a ∈ P the corresponding hypervol-
ume estimate Îk

h(a, P, R). It will be later used by the evolutionary algorithm
presented in Section .. Note that the partitions Hi(a, P, R) with i > k do
not need to be considered for the fitness calculation as they do not contribute
to the Ik

h values that need to be estimated, cf. Definition ..

In order to study how closely the sample size m and the accuracy of the
estimates is related, a simple experiment was carried out: ten imaginary
individuals a ∈ A were generated, the objective vectors f(a) of which are
uniformly distributed at random on a three dimensional unit simplex, simi-
larly to the experiments presented in Table .. These individuals were then
ranked on the one hand according to the estimates Î

|A|
h and on the other

hand with respect to the exact values I
|A|
h . The closer the former ranking is

to the latter ranking, the higher is the accuracy of the estimation procedure
given by Algorithm . To quantify the differences between the two rankings,
the percentage is calculated of all pairs (i, j) with 1 ≤ i < j ≤ |A| where the
individuals at the ith position and the jth position in the ranking accord-
ing to I

|A|
h have the same order in the ranking according to Î

|A|
h , see [].

The experiment was repeated for different numbers of sampling points as
shown in Table .. The experimental results indicate that   samples
are necessary to achieve an error below 5% and that   sampling
points are sufficient in this setting to obtain the exact ranking.

Seeing the close relationship between sample size and accuracy, one may
ask whether m can be adjusted automatically on the basis of confidence
intervals. In the technical report by the author and colleagues [] confi-
dence intervals are derived for the sampled fitness values. Based on these,
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: procedure estimateHypervolume(P , R, k, m)
: for i← 1, d do (determine sampling box S)
: li = mina∈P fi(a)
: ui = max(r1,...,rd)∈R ri

: S ← [l1, u1]× · · · × [ld, ud]
: V ←

∏d
i=1 max{0, (ui − li)}

: F ←
∪

a∈P {(a, 0)} (reset fitness assignment)
: for j ← 1, m do (perform sampling)
: choose s ∈ S uniformly at random

: if ∃r ∈ R : s 6 r then
: AU ←

∪
a∈P, f(a)6s{f(a)}

: if |AU | ≤ k then (hit in a relevant partition)
: α←

∏|AU |−1
l=1

k−l
|P |−l

: F ′ ← ∅
: for all (a, v) ∈ F do (update hypervolume estimates)
: if f(a) 6 s then
: F ′ ← F ′ ∪ {(a, v + α

|AU | ·
V
m )}

: else
: F ′ ← F ′ ∪ {(a, v)}
: F ← F ′

: return F

Algorithm  Hypervolume-based Fitness Value Estimation. Requires a population P ∈ ψ, a
reference set R ⊆ Z, the fitness parameter k ∈ N, and the number of sampling points m ∈ N

Table . Accuracy of the ranking of  individuals according to Îh Eq. . in comparison to
Ih for different sample sizes. The percentages represent the number of pairs of individuals
ranked correctly.

nr. of samples m ranking accuracy no of samples m ranking accuracy

 .%  .%
 .%  .%
 .%  . %
 .%
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: initialize population P by selecting n solutions from X uniformly at random
: g ← 0
: while g ≤ gmax do
: P ′ ← matingSelection(P, R, n, m)
: P ′′ ← variation(P ′, n)
: P ← environmentalSelection(P ∪ P ′′, R, n, m)
: g ← g + 1

Algorithm  HypE Main Loop. Requires a reference set R⊆ Z, a population size n ∈ N, the
number of generations gmax , and the number of sampling points m ∈ N

an adaptive version of the sampling procedure is presented. However, the
comparison to the strategy using a fixed number of samples did not reveal
any advantages. Therefore, in this thesis only the version with fixed number
of samples is shown, to not unnecessarily clutter this chapter by different
variants of HypE (see next section).

. · Using the New Fitness Assignment Scheme for Multiobjective
Search

In this section, an evolutionary algorithm named HypE is described (Hyp-
ervolume Estimation Algorithm for Multiobjective Optimization) which is
based on the fitness assignment schemes presented in the previous sections.
When the number of objectives is small (≤ 3), the hypervolume values Ik

h

are computed exactly using Algorithm , otherwise they are estimated based
on Algorithm .

The main loop of HypE is given by Algorithm . It reflects a standard
evolutionary algorithm and consists of the successive application of mat-
ing selection (Algorithm ), variation, and environmental selection (Algo-
rithm ). As to mating selection, binary tournament selection is proposed
here, although any other selection scheme could be used as well. The proce-
dure variation encapsulates the application of mutation and recombination
operators to generate λ offspring. Finally, environmental selection aims at
selecting the most promising n solutions from the multiset-union of parent
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: procedure matingSelection(P ,R,n,m)
: if d ≤ 3 then
: F ← computeHypervolume(P, R, n)
: else
: F ← estimateHypervolume(P, R, n, m)

: Q← ∅
: while |Q| < n do
: choose (a, va), (b, vb) ∈ F uniformly at random
: if va > vb then

: Q← Q ∪ {a}
: else
: Q← Q ∪ {b}
: return Q

Algorithm  HypE Mating Selection. Requires a population P ∈ ψ, a reference set R ⊆ Z,
the number of offspring n ∈ N, and the number of sampling points m ∈ N

population and offspring; more precisely, it creates a new population by
carrying out the following two steps:

. First, the union of parents and offspring is divided into disjoint parti-
tions using the principle of non-dominated sorting [, ], also known
as dominance depth, see Section .. on page . Starting with the
lowest dominance depth level, the partitions are moved one by one to
the new population as long as the first partition is reached that cannot
be transfered completely. This corresponds to the scheme used in most
hypervolume-based multiobjective optimizers [, , ].

. The partition that only fits partially into the new population is then
processed using the method presented in Section ... In each step, the
fitness values for the partition under consideration are computed and
the individual with the worst fitness is removed—if multiple individuals
share the same minimal fitness, then one of them is selected uniformly at
random. This procedure is repeated until the partition has been reduced
to the desired size, i.e., until it fits into the remaining slots left in the
new population.
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: procedure environmentalSelection(P ,R,n,m)
: P ′ ← P (remaining population members)
: Q← ∅ (new population)
: Q′ ← ∅ (current non-dominated set)
: repeat (iteratively copy non-dominated sets to Q)
: Q← Q ∪Q′

: Q′, P ′′ ← ∅
: for all a ∈ P ′ do (determine current non-dominated set in P ′)
: if ∀b ∈ P ′ : b ≼ a⇒ a ≼ b then

: Q′ ← Q′ ∪ {a}
: else
: P ′′ ← P ′′ ∪ {a}
: P ′ ← P ′′

: until |Q|+ |Q′| ≥ n ∨ P ′ = ∅
: k = |Q|+ |Q′| − n
: while k > 0 do (truncate last non-fitting non-dominated set Q′)
: if d ≤ 3 then
: F ← computeHypervolume(Q′, R, k)
: else
: F ← estimateHypervolume(Q′, R, k, m)

: Q′ ← ∅
: removed← false
: for all (a, v) ∈ F do (remove worst solution from Q′)
: if removed = true ∨ v ̸= min(a,v)∈F{v} then
: Q′ ← Q′ ∪ {a}
: else
: removed← true
: k ← k − 1

: Q← Q ∪Q′

: return Q

Algorithm  HypE Environmental Selection. Requires a population P ∈ ψ, a reference set R
⊆ Z, the number of offspring λ∈ N, and the number of sampling points m ∈ N
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Concerning the fitness assignment, the number of objectives determines
whether the exact or the estimated Ik

h values are considered. If three or
less objectives are involved, employing Algorithm  is recommended, other-
wise to use Algorithm . The latter works with a fixed number of sampling
points to estimate the hypervolume values Ik

h , regardless of the confidence
of the decision to be made; hence, the variance of the estimates does not
need to be calculated and it is sufficient to update for each sample drawn
an array storing the fitness values of the population members.

. · Experiments

This section serves two goals: (i) to investigate the influence of specific al-
gorithmic concepts (fitness, sample size) on the performance of HypE, and
(ii) to study the effectiveness of HypE in comparison to existing MOEAs.
A difficulty that arises in this context is how to statistically compare the
quality of Pareto-set approximations with respect to the hypervolume in-
dicator when a large number of objectives (d ≥ 5) is considered. In this
case, exact computation of the hypervolume becomes infeasible; to this end,
Monte Carlo sampling is proposed using appropriate statistical tools as sum-
marized in the next section, and outlined in more detail in Appendix A on
page .

.. ·Experimental Setup

HypE is implemented within the PISA framework [] and tested in two
versions: the first (HypE) uses fitness-based mating selection as described in
Algorithm , while the second (HypE*) employs a uniform mating selection
scheme where all individuals have the same probability of being chosen for
reproduction. Unless stated otherwise, for sampling the number of sampling
points is fixed to m = 10, 000 kept constant during a run.

HypE and HypE* are compared to three popular MOEAs, namely NSGA-II
[], SPEA [], and IBEA (in combination with the ε-indicator) [].
Since these algorithms are not designed to optimize the hypervolume, it
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cannot be expected that they perform particularly well when measuring the
quality of the approximation in terms of the hypervolume indicator. Never-
theless, they serve as an important reference as they are considerably faster
than hypervolume-based search algorithms and therefore can execute a sub-
stantially larger number of generations when keeping the available computa-
tion time fixed. On the other hand, dedicated hypervolume-based methods
are included in the comparisons. The algorithms proposed in [, , ] use
the same fitness assignment scheme which can be mimicked by RHV, see
Section .., where mating selection is done as in HypE but using the contri-
butions I1h as fitness value. The acronym RHV* stands for the variant that
uses uniform selection for mating. However, no comparisons are provided to
the original implementations of Brockhoff and Zitzler [], Emmerich et al.
[], Igel et al. [], because the focus is on the fitness assignment principles
and not on specific data structures for fast hypervolume calculation as in
[] or specific variation operators as in []. Furthermore, SHV proposed
in Section .. and Appendix D. is used. Finally, to study the influence of
the non-dominated sorting also a simple HypE variant named RS (random
selection) is included where all individuals are assigned the same constant
fitness value. Thereby, the selection pressure is only maintained by the non-
dominated sorting carried out during the environmental selection phase.

As basis for the comparisons, the DTLZ [], the WFG [], and the knap-
sack [] test problem suites are considered since they allow the number
of objectives to be scaled arbitrarily—here, ranging from 2 to 50 objectives.
For the DTLZ problem, the number of decision variables is set to 300, while
for the WFG problems individual values are used, see Table .. As to the
knapsack problem, 400 items are used which were modified with mutation
probability 1 by one-bit mutation and by one-point crossover with probabil-
ity 0.5. For each benchmark function, 30 runs are carried out per algorithm
using a population size of n = 50 and a maximum number gmax = 200

of generations (unless the computation time is fixed). The individuals are
represented by real vectors, where a polynomial distribution is used for mu-
tation and the SBX- operator for recombination []. The recombination
and mutation probabilities are set according to Deb et al. [].
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Table . Number of decision variables and their decomposition into position and distance
variables as used for the WFG test functions depending on the number of objectives.

Objective Space Dimensions (d)

d d d d d d d

distance parameters       
position parameters       

decision variables       

The quality of the Pareto-set approximations of all algorithms Ai are as-
sessed using the hypervolume indicator, where for less than 6 objectives
the indicator values are calculated exactly and otherwise approximated by
Monte Carlo sampling. Based on the hypervolume, the performance score
P (Ai) is calculated as described in Appendix A on page .

.. ·Results

In the following, the experimental results are discussed, grouped according
to the foci of the investigations.

Exact Hypervolume Computation Versus Sampling
First off, HypE is compared with RHV—due to the large computation effort
caused by the exact hypervolume calculation only on a single test problem,
namely DTLZ with 2, 3, 4, and 5 objectives. Both HypE and HypE*
are run with exact fitness calculation (Algorithm ) as well as with the
estimation procedure (Algorithm ); the former variants are marked with
a trailing ‘-e’, while the latter variants are marked with a trailing ‘-s’. All
algorithms run for 200 generations, per algorithm 30 runs were performed.

Figure . shows the hypervolume values normalized for each test problem
instance separately. As one may expect, HypE beats HypE*. Moreover,
fitness-based mating selection is beneficial to both HypE and RHV. The
two best variants, HypE-e and RHV, reach about the same hypervolume
values, independently of the number of objectives. Although HypE reaches
a better hypervolume median for all four number of objectives, the difference
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Figure . Comparison of the hypervolume indicator values for different variants of HypE
and the regular hypervolume algorithm (RHV) on DTLZ with , , , and  objectives. For
presentation reasons, the hypervolume values are normalized to the minimal and maximal
values observed per problem instance.

is never significant. Hence, HypE can be considered an adequate alterna-
tive to the regular hypervolume algorithms; the main advantage though
becomes evident when the respective fitness measures need to be estimated,
see below.

HypE Versus Other MOEAs
Now HypE and HypE* are compared, both using a constant number of
samples, to other multiobjective evolutionary algorithms. Table D. on
pages – shows the performance score and mean hypervolume on the
 testproblems mentioned in Section ... Except on few testproblems
HypE is better than HypE*. HypE reaches the best performance score
overall. Summing up all performance scores, HypE yields the best total
(), followed by HypE* (), IBEA () and the method proposed in
[] (). SPEA and NSGA-II reach almost the same score ( and 
respectively), clearly outperforming the random selection ().

According to the Kruskal-Wallis test described in Appendix A on page  with confidence level α = ..
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Figure . Mean performance
score over all testproblems for
different number of objectives.
The smaller the score, the better
the Pareto-set approximation in
terms of hypervolume. Note, that
RHV (d ≤ ) and SHV (d > ) are
plotted as one line. 2 3 5 7 10 25 50
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Figure . Mean performance
score over all dimensions for
different testproblems, namely
DTLZ (Dx), WFG (Wx) and
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In order to better visualize the performance index, two figures are shown
where the index is summarized for different testproblems and number of
objectives respectively. Figure . shows the average performance over all
testproblems for different number of objectives. Except for two objective
problems (where IBEA is better), HypE yields the best score, increasing
its lead in higher dimensions. The version using uniform mating selection,
HypE*, is outperformed by IBEA for two to seven objectives and only there-
after reaches a similar score as HypE. This indicates, that using non-uniform
mating selection is particularly advantageous for small number of objectives.
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Figure . Hypervolume process over ten minutes of HypE+ for different samples sizes x in
thousands (HypE-xk) as well as using the exact values (HypE-e). The test problem is WFG
for three objectives. HypE is compared to the algorithms presented in Section ., where the
results are split in two figures with identical axis for the sake of clarity. The numbers at the
right border of the figures indicate the total number of generations.

Next the performance score is shown for the individual testproblems. Fig-
ure . shows the average index over all number of objectives. For DTLZ,
,  and , knapsack and WFG, IBEA outperforms HypE, for DTLZ and
knapsack, SHV as well is better than HypE. On WFG, HypE* has the
lowest hypervolume. On the remaining  testproblems, HypE reaches the
best mean performance.

Note that the above comparison is carried out for the case all algorithms
run for the same number of generations and HypE needs longer execution
time, e.g., in comparison to SPEA or NSGA-II. Therefore, in the following
it is investigated, whether NSGA-II and SPEA will not overtake HypE
given a constant amount of time. Figure . shows the hypervolume of the
Pareto-set approximations over time for HypE using the exact fitness values
as well as the estimated values for different samples sizes m. Although only
the results on WFG are shown, the same experiments were repeated on
DTLZ, DTLZ, WFG and WFG and provided similar outcomes. Even
though SPEA, NSGA-II and even IBEA are able to process twice as many
generations as the exact HypE, they do not reach its hypervolume. In the
three dimensional example used, HypE can be run sufficiently fast without
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approximating the fitness values. Nevertheless, the sampled version is used
as well to show the dependency of the execution time and quality on the
number of samples m. Via m, the execution time of HypE can be traded off
against the quality of the Pareto-set approximation. The fewer samples are
used, the more the behavior of HypE resembles random selection. On the
other hand by increasing m, the quality of exact calculation can be achieved,
increasing the execution time, though. For example, with m = , HypE
is able to carry out nearly the same number of generations as SPEA or
NSGA-II, but the Pareto-set is just as good as when  samples are
used, producing only a fifteenth the number of generations. In the exam-
ple given, m =  represents the best compromise, but the number of
samples should be increased in two cases: (i) the fitness evaluation takes
more time. This will affect the faster algorithm much more and increasing
the number of samples will influence the execution time much less. Most
real world problems, for instance, are considerably more expensive to eval-
uate than the DTLZ, WFG, and knapsack instances used in this thesis.
Therefore, the cost of the hypervolume estimation will matter less in most
applications. (ii) More generations are used. In this case, HypE using more
samples might overtake the faster versions with fewer samples, since those
are more vulnerable to stagnation.

. · Summary

On the basis of the Regular Hypervolume-based Algorithm (RHV), this
chapter has shown how the hypervolume indicator is usually employed to
perform environmental selection. For this algorithm, the principle of sam-
pling hypervolume-based fitness values has then been introduced, leading to
the Sampling-based Hypervolume-oriented Algorithm (SHV) which can be
applied to problems with arbitrary numbers of objective functions. Investi-
gating SHV has illustrated different problems one is confronted with when
using Monte Carlo sampling in the context of RHV.

In light of these considerations, HypE (Hypervolume Estimation Algorithm
for Multiobjective Optimization) has been proposed, a novel hypervolume-
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based multiobjective evolutionary algorithm improving on SHV. It incor-
porates a new fitness assignment scheme based on the Lebesgue measure,
where this measure can be both exactly calculated and estimated by means
of Monte Carlo sampling. The latter allows to trade-off fitness accuracy
versus the overall computing time budget which renders hypervolume-based
search possible also for many-objective problems, in contrast to [, , ].

HypE was compared to various state-of-the-art MOEAs with regard to
the hypervolume indicator values of the generated Pareto-set approxima-
tions—on the DTLZ [], the WFG [], and the knapsack [] test problem
suites. The simulations results indicate that HypE is a highly competitive
multiobjective search algorithm; in the considered setting the Pareto front
approximations obtained by HypE reached the best hypervolume value in 
out of  cases averaged over all testproblems.

In the following Chapters, HypE will be extended in two directions: next in
Chapter  preference incorporation is tackled, while finally Chapter  adds
the possibility to consider robustness of solutions.




Articulating User Preferences in
Multi-Objective Search by
Sampling the
Weighted Hypervolume

In Chapter , the Hypervolume Estimation Algorithm for Multiobjective
Optimization (HypE) has been presented, which uses the unweighted hyper-
volume indicator to obtain Pareto-set approximations. By employing a novel
fitness assignement scheme, in combination with a fast sampling method,
the procedure thereby is also applicable to problems involving a large num-
ber of objectives. Experimental results have substantiated the advantages
of the approach in comparison to other Multiobjective Evolutionary Algo-
rithms (MOEAs).

As investigated in Chapter  for the biobjective case, the hypervolume in-
dicator introduces a certain bias, that determines the distribution of points
in the Pareto-set approximations obtained. One question that is of special
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interest in practice is whether and how this inherent preference of the hyper-
volume indicator can be changed to arbitrary user preference, e.g., towards
extreme solutions or towards so-called preference points.

Several approaches for articulating these user preferences are known from
the literature, e.g., by defining preference points [], specifying preferred
search directions [] or defining linear minimum and maximum tradeoffs
[]. For a general overview of articulating user preferences, see [, , ].
However, none of these methods leads to a refinement of Pareto dominance.

As has been illustrated in Chapter , the weighted hypervolume indicator
can be used to obtain such relations, and also allows to incorporate arbitrary
user preference as demonstrated in Chapter . The weighted hypervolume
indicator has been introduced in a study by Zitzler et al. [], and has
shown, theoretically and in experiments, that it is possible to articulate user
preference using the hypervolume. Furthermore, the paper has shown for
three different weight functions that optimizing the weighted hypervolume
indicator indeed results in solutions clustered in regions with higher weight
whereas regions with low weight contain only a few solutions.

However, the study inhibits two problems: (i) the proposed weight function
for articulating preference points is not easily extendable to more than two
objectives and (ii) the exact computation of the hypervolume indicator is
expensive if the number of objectives is high, i.e., the #P(X)-hardness
proof in [] has theoretically shown that the hypervolume computation is
exponential in the number of objectives unless P = NP. Another algorithm
by the author and colleagues shares this two issues [].

In this chapter, these two drawbacks are tackled by estimating the weighted
hypervolume with HypE. In particular,

• an extension of HypE to the weighted hypervolume is introduced to avoid
the exponential running time of the hypervolume indicator,

Instead of the standard term reference point, see for example [], the term preference point is used throughout this
chapter to reduce the likelihood of confusion with the hypervolume’s reference point.
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• two weight functions are proposed that allow to articulate preferences
towards extremes and towards predefined preference points. The distri-
butions can be arbitrarily combined and applied to problems with any
number of objectives, and

• the potential of the new approach is shown experimentally for several test
problems with up to  objectives by means of both visual inspection
and statistical tests.

. · Sampling the Weighted Hypervolume Indicator

As already motivated in Chapter , the hypervolume indicator needs to be
approximated when facing problems with many objectives, because the com-
putational effort increases heavily. To this end, the Hypervolume Estima-
tion Algorithm for Multiobjective Optimization (HypE) has been proposed,
which relies on Monte Carlo sampling. However, only the unweighted hyp-
ervolume has been considered, which has a predefined bias—as illustrated
in Chapter . In order to be able to realize different user preferences, in the
following the weighted hypervolume indicator is used. On the one hand, this
gives all the desirable properties of the unweighted hypervolume (see Chap-
ter ); on the other hand, it allows to accurately model user preferences, as
the relationship between weight function and density of points shows (see
Chapter ).

In order to be able to use the weighted hypervolume indicator within HypE,
its sampling procedure needs to be modified. The main component thereby
consists of estimating λ(Hi(a, P, R)), see Eq. .. By applying a weight
function, the partitions λ(Hi(a, P, R)) change to the weighted Lebesgue
measure λw(Hi(a, P, R)) where w(z) denotes the weight function.

.. ·Uniform Sampling

A straightforward way of approximating λw(Hi(a, P, R)) is to sample s1, . . . , sm

uniformly at random as in Chapter . Again, let X
(i,a)
j denote the corre-

sponding random variable that is equal to 1 in case of a hit of sj regarding
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Figure . Illustrates the two sampling pro-
cedures shown in Section . when applied
to the weight distribution function shown on
the top lest. In the upper lest plot,  sam-
ples are drawn uniformly within [,]×[,]
and are thereaster multiplied by the corre-
sponding weight. In the plot on the lest, sam-
ples are generated according to the weight
distribution function, such that they do not
need to be multiplied by the weight. 0
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the ith partition of a and 0 otherwise. Then an estimate for λw(Hi(a, P, R))

is obtained by multiplying each hit by the weight at the position of the sam-
ple, summing up the results for all hits, dividing the result by the number
of samples m, and multiplying with the volume of the sampling box V :

λ̂
(
Hw

i (a, P, R)
)
=

∑m
j=1 X

(i,a)
j w(sj)

m
· V (.)

On the top left of Figure .., this sampling procedure is illustrated. In
this approach, however, the precision of the estimation heavily depends
on the weight distribution w: if the support of w is small, the number of
samples m needs to be large to have a reliable estimation. Using Hoeffding’s
inequality [], one can show that the length of a confidence interval for a
given confidence level is proportional to the supremum of w. In the extreme
case of a dirac “function” as suggested in [] this would result in an infinite
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length for the confidence interval—in other words, infinitely many samples
are needed to obtain any desired accuracy.

.. ·Sampling According to Weight Function

Therefore, a different approach to sample the weighted hypervolume indica-
tor, more specifically λw(Hi(a, P, R)) is proposed here. In this chapter, it is
thereby assumed the weight function is a distribution, i.e.,

∫ r
(−∞,...,−∞) w(z)dz =

1 holds. This causes no loss of generality, as for search only the relative hyp-
ervolume matters, see Line  in Algorithm , and Line  in Algorithm .
Since the weight function is also positive, it therefore constitutes a density
function. In principle, any density function can be used as w. For an
efficient way of sampling, however, w is chosen in the following such that
samples can be drawn efficiently distributed according to w. For this reason,
multivariate normal distributions and exponential distributions will be used
for sampling non-uniformly.

To give the explicit expression of the Monte Carlo estimator, let Sw denote
a random variable admitting w as probability density function. For an
extensive overview of how random samples can be generated from those
distributions, see Devroye []. Let sw

1 , . . . , sw
m be m independent samples

of random variables distributed as Sw. Again, let X
(i,a)
j be 1 if sample

sw
j is a hit and zero otherwise. The weighted hypervolume contribution

λ
(
Hw

i (a, P, R)
)
then can be approximated by

λ̂
(
Hw

i (a, P, R)
)
=

∑m
j=1 X

(i,a)
j

m
· V . (.)

In contrast to Eq. ., the samples are not multiplied by the weight, see
the lower left of Figure .., instead, the weight distribution is implied by
the way samples are drawn. This technique of sampling according to the
weight distribution function instead of uniformly has the advantage that
the accuracy of the estimate, i.e., the confidence interval, is independent of
the weight distribution. Hoeffding’s inequality implies that with probability
larger than 1− α,

λ
(
Hw

i (a, P, R)
)
∈ [λ̂

(
Hw

i (a, P, R)
)
− tm,α, λ̂

(
Hw

i (a, P, R)
)
+ tm,α]
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where tm,α =
(
8
m log(2/α)

)1/2 which is independent of w and which is the
same confidence interval than for the non-weighted case. In other words,
it is not more expensive to do a Monte Carlo integration of the weighted
hypervolume than for the standard hypervolume indicator.

.. ·Sampling Multiple Weight Functions

In order to sample weight distributions that are defined as a mixture of sev-
eral independent distributions wi (1 ≤ i ≤ q) as proposed in Section ..,
the number of samples are distributed among the different distributions
in the following way: a weight distribution w(z) =

∑q
i=1 pi · wi(z) with∑

1≤i≤q pi = 1 is estimated by sampling each of the distributions wi inde-
pendently with m · pi samples and summing up the resulting estimates.

. · Integrating User Preferences

This section presents two different weight distribution functions to express
user preferences. Both distributions are continuous probability densities
that enable to draw samples according to the procedure presented above.
The first distribution allows to attribute importance to one objective and the
second to emphasize a preference point in the objective space. The section
is completed by demonstrating how any number of the two distributions can
be combined, e.g., to use more than one preference point.

.. ·Stressing the Extremes

One potential preference a user might have is to optimize preferably one
objective, say fs (note, that throughout the thesis minimization problems
are considered). The corresponding weight distribution should therefore
increase for decreasing values of fs. In terms of the rest of the objectives,
the weight distribution should stay constant for changing values in order
not to introduce an additional bias.

Zitzler et al. [] proposed to use an exponential function as the weight
distribution. Here, the same distribution is represented by the probability
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Figure . Illustrates the expo-
nential distribution that corre-
sponds to stressing the first ob-
jective (top) and the Gaussian dis-
tribution representing a prefer-
ence point (buttom). The lest
parts of the two subplots indicate
the notation used along with a
contour plot at intervals of 
of the maximum value observed
(which occurs on the second axis
and at µ⃗ respectively). The right
parts of the subplots show the ac-
tual value of the distribution as a
third component.
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density function whose marginal distribution for objective fs is an exponen-
tial distribution with rate parameter λ and whose marginal distributions of
the remaining objectives is a uniform distribution:

w(z1,· · ·, zd) =


(∏

i ̸=s(b
u
i − bl

i)
)−1

λe−λ(zs−bl
s) z ∈ B

0 z /∈ B

where B = [bl
1, bu

1 ]× . . .× [bl
d, bu

d ] denotes the space with non-zero probability
density.

Figure . shows the weight distribution for a biobjective problem when
stressing f1 with an exponential distribution in f1 (λ = 5) together with a
uniform distribution in the interval [0, 0.95] in the second objective (B =

[bl
s, bu

s ]× [bl
2, bu

2 ] = [0,∞]× [0, 0.95]).

The spread of the distribution is inversely proportional to the parameter
λ. Hence, the smaller λ the steeper the weight distribution increases at
the border of the objective space and the smaller the weight farther away
(see Figure .(a) on page  for contour plots of the exponential weight
distribution for distinct values of λ).
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.. ·Preference Points

Another user preference is the preference point []. This point, as well
as to a lesser extent the adjacent region, represents the most important
part of the objective space for the user. Together with the location of
the preference point, denoted by µ⃗ = (µ1, · · · , µd)

T ∈ Rd, the user has to
define a direction t⃗ = (t1, · · · , td)

T ∈ Rd. The solutions should preferably
lie along this direction if the preference point cannot be reached or, on
the contrary, even better solutions are found. The corresponding weight
distribution function reflects this preference by having the largest values at
the preference point and along t⃗ while decreasing fast perpendicular to t⃗.
To this end, [] proposes a bivariate ridge-like function that cannot be
easily extended to an arbitrary number of objectives. Therefore, using the
following multivariate Gaussian distribution is proposed here, which allows
an efficient sampling according to Eq. . and which can be used for any
number of objectives. Besides µ⃗ and t⃗, let σε, σt ∈ R denote standard devi-
ations of the distribution. Then the following probability density function
describes a multivariate normal distribution centered at µ⃗

w(z) =
1

(2π)d/2|C|1/2
e− 1

2
(z−µ⃗)T C−1(z−µ⃗))

where the covariance matrix C := σ2
εI + σ2

t t⃗⃗tT /∥t⃗∥2 is non-singular with
orthogonal eigenvectors t⃗, t2, · · · , td where the vectors t2, . . . , td can be taken
from an arbitrary orthogonal basis of the hyperplane orthogonal to t⃗. The
eigenvalues associated to t⃗, t2, · · · , td are σ2

ε +σ2
t , σ2

ε , · · · , σ2
ε ; |C| denotes the

determinant of C.

The equidensity contours of the distributions are ellipsoids whose principal
axis are t⃗, t2, · · · , td, see Figure .. The lengths of the axes are given by
the two standard deviations (i) σt for the axis spanned by t⃗ and (ii) σε for
the remaining d − 1 axes perpendicular to t⃗. The larger σt is chosen the
farther the objective vectors can lie from the preference point in direction
of ±t⃗ while they are still affected by the weight distribution. At the same
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time, however, the number of samples near the Pareto front approximation
decreases which reduces the accuracy of sampling.

The second variance, σε, influences the extension of points close to the
preference point. The smaller σε, the less widespread the solutions are (see
Figures .(b) for contour plots of three different choices of σε).

.. ·Combinations

A mixture of q weight distributions admitting the probability density func-
tions w1(z), . . . , wq(z) yields the distribution with density

w(z) = p1w1(z) + . . . + pqwq(z)

where the pi are positive real numbers with p1 + . . . + pq = 1. Though it
is not possible to translate any user preference directly to a weight distri-
bution function as in another work by the author and colleagues [], a wide
range of different user preferences can be represented by combining weight
distributions. These are—in contrast to the weight distributions in []—also
applicable to problems with more than two objectives. In the next section
mixtures of the two distributions presented above will be examined.

. · Experimental Validation

In order to test the approach of articulating user preferences presented in
Section ., the Hypervolume Estimation Algorithm for Multiobjective Op-
timization (HypE) as proposed in Chapter  using the novel sampling strat-
egy as presented in Section .. is evaluated. The application to different
multiobjective test problems investigates three important aspects of the
approach.

First, the influence of the different parameters on the distribution of the
resulting Pareto front approximations are investigated visually for both
approaches preferring preference points and extremes. In particular, the
following is examined for a preference point: its location µ⃗, the direction
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t⃗ and the influence of the standard deviations σε and σt; when stressing
extremes, the effects of changing the parameter λ is shown.

Secondly, the weighted hypervolume approach is visually compared to exist-
ing reference algorithms that do not optimize any user preference explicitly
for problems with more than two objectives. This demonstrates that the
new approach is—in contrast to []—also applicable to problems involving
more than two objectives.

Finally, a short statistical comparison on problems with up to  objectives
is carried out to investigate whether the generated Pareto front approxima-
tions obtained by HypE, as a matter of fact, better fulfill the underlying user
preference than non-dominated fronts resulting from reference algorithms.

.. ·Experimental Setup

For HypE,   samples are generated according to the probability density
functions presented in Section . using the corresponding built-in functions
of MATLAB® version a. These samples are then used to calculate a
fitness value for each individual, see Chapter  for a detailed description of
the fitness calculation of HypE.

The evolutionary multiobjective algorithms NSGA-II [] and IBEA []
serve as reference algorithms. For the latter, the ε-indicator has been used
since preliminary experiments showed this variant to be superior to the
one using the hypervolume indicator. The parameters of IBEA are set as
κ = 0.05 and ρ = 1.1. All algorithms are run for  generations. New
individuals are generated by the SBX crossover operator with ηc = 15 and
the variable-wise polynomial mutation operator with ηm = 20 []. The
crossover and mutation probabilities are set to 1 and 1/20 respectively.

For the biobjective test problems both the population size and the number of
offspring are set to 25 while for more objectives these numbers are doubled.
For the biobjective investigations, the test problems ZDT (convex Pareto
front), ZDT (discontinuous Pareto front) [] and DTLZ [] (concave
Pareto front) are utilized with 20 decision variables. For higher dimensions
only DTLZ is employed.
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Figure . Shows the Pareto front approximations (dots) found by HypE using different
weight distribution functions, shown as contour lines at intervals of  of the maximum
weight value. For both rows one parameter of the sampled distribution was modified, i.e., on
top the rate parameter of the exponential distribution λ, on the bottom the spread σε. The
test problem is ZDT where the Pareto front is shown as a solid line.

.. ·Visual Inspection of Parameter Choices

In this section, the influence of different parameters on the weight distri-
bution functions and the resulting Pareto front approximations are investi-
gated. Unless noted otherwise, σt = 0.5, σε = 0.05 and t⃗ = (1, 1) are used
when stressing a preference point and B = [0,∞] × [0, 3] when stressing
the first objective (fs = f1). The weight distributions are indicated by
contour lines at the intervals of % of the maximum value that arises.
Hence, the contour lines do not reflect the actual weight but only the rel-
ative distribution thereof. As an example, the innermost contour line in
Figure .(b) corresponds to a weight that is % of the maximal value in
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Figure . Uses the same test problem, and visual elements as Figure .. For the three
figures on top the direction t⃗ is modified, and for figure on the bottom the location µ⃗ of the
preference point is changed (see text for details and the values used).

all plots. The corresponding absolute weight, however, changes from figure
to figure because the maximum weight value changes due to the property∫ r
(−∞,...,−∞) w(z)dz = 1. Multiple runs for each testcase were tested that led
to similar results such that mostly only one run is displayed to illustrate the
influence of the weight on the distribution of points.

Spread of the Distributions
Both proposed weight distribution functions have parameters that cause
the weight to be more or less spread. Figure .(a) shows the weight distri-
bution and the resulting Pareto front approximation using the exponential
distribution proposed in Section .. for λ = 100 (top), λ = 20 (center)
and λ = 5 (bottom). Figure .(b) shows the distribution of points for a



.. Experimental Validation 

preference point located at µ⃗ = (0.7, 0.3) where σε is set to 0.2 (top), 0.05

(middle) and 0.01 (bottom).

Direction of the Preference Point Distribution
By t⃗, the user can define the desired trade-off between the objectives for
the case that either the preference point cannot be reached or that solu-
tions dominating the preference point are obtained. In Figure .(a) the
preference point is positioned at µ⃗ = (0, 0.4) which lies below the Pareto
front and can therefore not be reached. In this case, the direction t⃗ prede-
termines where the resulting points lie. In the topmost example, a choice
of t⃗ = (cos(80 ◦), sin(80 ◦)) reflects a higher preference of the first objec-
tive at the expense of the second. On the other hand, the bottom figure
is obtained for t⃗ = (1, 0), i.e., values of 0.4 are preferred for the second
objective and only increases of the first objective are allowed. The figure in
the middle presents a compromise where the focus lies close to the diagonal,
t⃗ = (cos(40 ◦), sin(40 ◦)).

Location of the Preference Point
Since the preference point can be placed both too optimistically (as in the
previous section) or too pessimistically, the parameter σt allows to tune
how far away the individuals can be from the preference point and still
be influenced by it. For a fixed σt however, the location of the prefer-
ence point has a high impact on the resulting distribution of solutions, see
Figure .(b). If none to only a few samples are dominated by the indi-
viduals (top, µ⃗ = (−1.2,−1.4)), no pressure towards the preference point is
active—in fact only non-dominated sorting operates. In this case, the pref-
erence point should be combined with a uniform distribution, e.g., as in the
left of Figure .(a) % of the samples are used for the preference point
and % to sample uniformly in the objective space within [0, 3] × [0, 3].
This causes the solutions to be distributed according to the unweighted
hypervolume indicator as long as the preference point has no influence.

As soon as a couple of samples are dominated, the corresponding individuals
are promoted which leads to an accumulation in that area (middle, µ⃗ =

(−0.3,−0.5)). If the preference point is chosen very pessimistically (bottom,
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µ⃗ = (1.5, 1.3)) individuals are able to dominate all or most of the samples
even if they are not located where the direction t⃗ dictates. This leads to a
much ampler arrangement of solutions than expected considering the chosen
σε.

Combinations of Distributions
As demonstrated in Section ., any number of weight distribution functions
can be combined as a weighted sum, even assigning them different weights
or focus. For example, the user might define different preference points he
or she is interested in as depicted in the middle of Figure .(a): three
preference points are positioned at µ⃗ = (0.2, 0.8), at µ⃗ = (0.5, 0.5) and at
µ⃗ = (0.8, 0.2). The one in the middle is declared to be the most important
one by assigning the largest weight p2 = 0.5, the preference points to the left
and right use p1 = 0.2 and p3 = 0.3 respectively. As expected, in this case
the points are partitioned into disjoint regions around the three preference
points. 10 individuals cluster around the center where the most samples
emerge, 7 are associated with the preference point on the left and 8 with
the one on the right.

To promote individuals at the border of the objective space, two exponential
weight distributions can be added up as on the right of Figure .(a) where
λ = 10 with p1 = 0.3 for the first objective and p2 = 0.7 for the second.

Comparison Between Different Problems
In addition to ZDT, the tests of the previous sections were also carried
out for other test problems, namely ZDT which has a discontinuous Pa-
reto front shape, DTLZ and ZDT (both non-convex). These three test
problems are much harder to optimize and neither HypE nor the reference
algorithms used were able to find Pareto optimal solutions. The points are
nevertheless clustered at regions with the largest weight, see Figure .(b),
where one preference point with µ⃗ = (0.7, 0.3) and σε = 0.1 is used.

.. ·High-Dimensional Spaces

For illustrative reasons in the previous section the sampling procedure was
applied to biobjective problems. The advantage of the method, however, is
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(a) On the lest the same preference point is used as in the upper plot of Figure .(b) but
spending  of the samples on a uniform distribution. The Figure in the middle shows the
combination of three preference points, and the Figure on the right illustrates stressing both
the first and second objective.
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(b) Distribution of the objective vectors when applying the same preference point to different
test problems, i.e., ZDT (only the positive part shown) (lest), DTLZ (middle) and ZDT (right)

Figure . These figures use the same visual elements as Figure . which explains them in
its caption.

that an arbitrary number of objectives can be tackled. Figure . shows
the Pareto front and the solutions found by different algorithms on the
DTLZ problem with  objectives. While NSGA-II and IBEA do not op-
timize any user defined preference, HypE uses two preference points at
µ⃗1 = (0.8, 0.2, 0.6) (p1 = 0.2) and µ⃗2 = (0.2, 0.9, 0.5) (p2 = 0.8) with
σε = 0.1 (shown as ellipsoids). This leads to a cluster of points at each
preference point.
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Figure . Pareto front approximations of
five runs (depicted by different symbols) for
the -objective DTLZ test problem using
NSGA-II (right), IBEA (top right), and HypE
with two preference points displayed as el-
lipsoids (top lest).
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Figure . Distribution of points, plotted in parallel coordinates, for the -objective DTLZ
test problem for IBEA (a), and HypE with two preference points (solid black lines) and σε =
. (b).
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The Pareto front approximation on DTLZ with 7 objectives is depicted in
Figure . by means of parallel coordinates plots for IBEA and HypE with
σε = 0.05. The plot for NSGA-II is omitted due to space limitations; it can
be noted that it looks similar to the one of IBEA except that NSGA-II does
not come as close to the Pareto front as IBEA, i.e., the objective values are
spread between  and .. Both IBEA and NSGA-II generate solutions at
the boundary of the objective space while only the former finds solutions
near the Pareto front. To get solutions near the center of the Pareto front,
HypE is applied with a preference point at 0.3780 · (1, . . . , 1). A second
preference point is set at a random location near the Pareto front. The
spread σε is set for both preference points to 0.05 and the probabilities of
the mixture are set as 0.8 and 0.2 respectively leading to a population of
solutions grouped around the two preference points (Figure .).

To investigate further whether HypE actually optimizes the weight distribu-
tion used during search, five versions of HypE are run in another experiment.
All versions use a different weight distribution wpi with reference point pi

listed in Table .. For all five versions, the spread is set to σε = 0.05 and
the direction to (1, . . . , 1). All versions of HypE together with IBEA and
NSGA-II then optimized the DTLZ test problem with 10 objectives.

The Pareto front approximations for  independent runs of all five versions
of HypE as well as of NSGA-II and IBEA are then compared in terms of the
weighted hypervolume indicator with the weight distribution functions wp1

to wp5, see Table . where larger numbers represent better hypervolume
approximations. In each case, HypE with preference point pi outperforms
statistically significant the other algorithms in terms of the hypervolume
indicator with wpi—assessed by Kruskal–Wallis and the Conover–Inman
post hoc tests with a significance level of % according to Appendix A on
page . This indicates that applying the weighted integration technique
during search will generate Pareto front approximations that score better
on the corresponding hypervolume indicator than using general purpose
algorithms with no user defined search direction.

µ⃗ = (., ., ., ., ., ., .)
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Table . Mean hypervolume
values for five different weight
distribution functions that
correspond to preference points
at p to p respectively. As
optimization algorithms, HypE
using the aforementioned weight
distribution functions, as well as
IBEA and NSGA-II are used. As
the bold numbers indicate, the
significantly largest hypervolume
for preference pi is obtained by
HypE optimizing preference pi.

IBEA NSGA-II HypE with
p p p p p

In
di
ca
to
r

p . . . . . . .

p . . . . . . .

p . . . . . . .

p . . . . . . .

p . . . . . . .
p : µ⃗ = (m ,m , m , m , m , m , m , m , m , m); p : µ⃗ = (m , m , m , m ,
m , m , m , m , m , m); p : µ⃗ = (m , m , m , m , m , m , m , m , m ,
m); p : µ⃗ = (m , m , m , m , m , m , m , m , m , m); p : µ⃗ = (m , m ,
m , m , m , m , m , m , m , m) with m = ., m = ., m =
., m = ., m = ., m = ., m = .

. · Summary

This chapter has described two procedures to approximate the weighted hyp-
ervolume integration developed in [] in the context of HypE. Two types
of user preferences have been expressed by probability density functions that
ease the fast generation of samples—one stressing certain objectives and the
second emphasizing a preference point. Additionally, any combination of
the two is possible. The suggested drawing of samples offers the possibility
to incorporate user preferences, such that the induced preference relation is
transitive and a refinement of Pareto dominance, see Section ... Thus,
cyclic behavior can be avoided, and convergence to Pareto-optimal solutions
can be shown. In contrast to previous approaches based on the weighted
hypervolume [, ] the algorithm remains applicable when increasing the
number of objectives.

The new suggested drawing of samples within HypE has been applied to
various test problems. It has turned out by both visual inspection and
statistical tests that the generated Pareto front approximations reflect the
underlying weight distribution better than methods with no user defined
preference. Given the comprehensive theoretical understanding of the hyp-
ervolume indicator, derived in Chapter , the proposed method thereby
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allows to realize user preference in a very concise way, and to predict the
resulting distribution of solutions in the Pareto-front approximation.

However, the proposed method first needs to prove itself in practice. In
particular, it has to be investigated whether defining preference points or
objectives to be stressed is (a) feasible for decision makers, and (b) offers
them sufficient possibilities. The presented sampling strategy thereby only
provides an initial framework, which can be easily extended to other weight
distribution functions, if so desired.






Robustness in
Hypervolume-Based Search

In the previous chapters, the main task was to approximate the set of Pareto-
optimal solutions. When those are implemented in practice, however, un-
avoidable inaccuracies often prevent that the solutions are realized with
perfect precision, which more or less degrades their objective values. Ex-
amples include the field of chemical engineering, mechanical manufacturing
processes, machine constructions and others. But even for an actual realiza-
tion, noise caused, for example by natural fluctuations in the environment,
might lead to differing observed objective values over time.

In other words, the modeling assumption made in the previous chapters of
deterministic decision variables being evaluated by deterministic objective
functions no longer holds. In such cases, the decision makers are most likely
interested in finding robust solutions that are less sensitive to perturbations,
i.e., the optimization model in one way or another needs to consider the
stochastic behavior of solutions when looked at in practice.
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In this chapter, the question of incorporating robustness into hypervolume-
based search is addressed. First, three common existing concepts to consider
robustness are translated to hypervolume-based search. Secondly, an exten-
sion of the hypervolume indicator is proposed that not only unifies those
three concepts, but also enables to realize much more general trade-offs be-
tween objective values and robustness of a solution. Finally, the approaches
are compared on two test problem suites, as well as on a newly proposed
real world bridge problem.

. ·Motivation

The vast majority of studies in the area of multiobjective optimization tack-
les the task of finding Pareto-optimal solutions [, ]. These solutions are
of great theoretical interest as they achieve the best possible performance.
In practice, however, for the most part their implementations suffer from
inevitable, and often uncontrollable, perturbations. Solutions to engineering
problems for instance can usually not be manufactured arbitrarily accurate
such that the implemented solution and its objective values differ from the
original specification, up to the point where they become infeasible. Designs
which are seriously affected by perturbations of any kind might no longer
be acceptable to a decision maker from a practical point of view—despite
the promising theoretical result.

According to Beyer and Sendhoff [] there are four different types of un-
certainty affecting the objective values of a solution: (i) the environment or
operating conditions change. For example, the unsteady atmospheric pres-
sure, relative humidity, temperature, wind direction and speed influence the
performance of airfoil designs; (ii) the production is only accurate up to a
certain tolerance. This type of controllable perturbation directly affects the
decision variables; (iii) determining the objective function is afflicted with
uncertainty. For a real system, this can be due to measuring errors while for
simulations this usually includes modeling errors; (iv) the underlying con-
straints on the decision variables might be uncertain such that the decision
space changes.
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This chapter focuses on the second type of uncertainty, but for the most part
the derived concepts also apply to other types of uncertainty or combinations
thereof. The uncertainty due to production variations needs to be taken
into account within both optimization model and algorithm in order to find
robust solutions that are relatively insensitive to perturbations. Ideally,
there exist Pareto-optimal designs whose characteristics fluctuate within an
acceptable range. Yet, for the most part robustness and quality (objective
values) are irreconcilable goals, and one has to make concessions to quality
in order to achieve an acceptable robustness level.

Many studies have been devoted to robustness in the context of single-
objective optimization, e.g., [, , ]. Most of these approaches, however,
are not applicable to multiobjective optimization. The first approaches by
Kunjur and Krishnamurty [] and Tsui [] to consider multiple objec-
tives in combination with robustness are based on the design of experiment
approach (DOE) by Taguchi []; however, they aggregate the individual
objective functions such that the optimization itself is no longer of mul-
tiobjective nature. Only few studies genuinely tackle robustness in mul-
tiobjective optimization: one approach by Teich [] is to define a prob-
abilistic dominance relation that reflects the underlying noise. A similar
concept by Hughes [] ranks individuals based on the objective values and
the associated uncertainty. Deb and Gupta [, ] considered robustness
by either adding an additional constraint or by optimizing according to
a fitness averaged over perturbations. Most multiobjective optimization
methods considering robustness, as well as many single-objective methods
that can be extended to multiple objectives, fall into one of the following
three categories:

A: Replacing the objective values. Among the widest-spread approaches to
account for noise is to replace the objective values by a measure or sta-
tistical value reflecting the uncertainty. Parkinson et al. [] for instance
optimize the worst case. The same approach, referred to as “min max”,
is also employed in other studies, e.g., in [, , ]. Different studies
apply an averaging approach where the mean of the objective function is
used as the optimization criterion [, , ]. In Mulvey et al. [] the
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objective values and a robustness measure are aggregated into a single
value that serves as the optimization criterion.

B: Using one or more additional objectives. Many studies try to assess the
robustness of solutions x by a measure r(x), e.g., by taking the norm
of the variance of the objective values f(x) [] or the maximum de-
viation from f(x) []. This robustness measure is then treated as an
additional objective [, , ]. A study by Burke et al. [] fixes a
particular solution (a fleet assignment of an airline scheduling problem),
and only optimizes the robustness of solutions (the schedule reliability
and feasibility).

C: Using at least one additional constraint. A third possibility is to restrict
the search to solutions fulfilling a predefined robustness constraint, again
with respect to a robustness measures r(x) [, , , ].

Combinations of A and B are also used; Das [] for example considers the
expected fitness along with the objective values f(x), while Chen et al. []
optimize the mean and variance of f(x).

In the light of the various advantages of the hypervolume indicator outlined
in the previous chapters, the question arises whether the above concepts
can be translated to a concept for the hypervolume indicator. On account
of the only recent emergence of the hypervolume, to the author’s knowledge
no study has considered robustness issues in this context yet. A few studies
have used the hypervolume as a measure of robustness though: Ge et al. []
have used the indicator to assess the sensitivity of design regions according
to the robust design of Taguchi []. A similar approach by Beer and
Liebscher [] uses the hypervolume to measure the range of possible decision
variables that lead to the desired range of objective values. A study by
Hamann et al. [] applied the hypervolume in the context of sensitivity
analysis.

In this chapter the following open questions concerning robustness and hyp-
ervolume are tackled: (i) how can the three existing approaches A, B, and C
mentioned above be translated to hypervolume-based search; (ii) the three
approaches can be seen as special ways of how to consider robustness along



.. Background 

with objective values. The question therefore arises, as how to also con-
sider other trade-offs between robustness and objective values; (iii) how to
adjust the Hypervolume Estimation Algorithm for Multiobjective Optimi-
zation (HypE) to this generalized hypervolume indicator in order to make
the new indicator applicable to problems with a large number of objectives.

The remainder of this chapter is organized as follow: in the next section, con-
cepts to translate the three approaches (A-C) to hypervolume-based search
are presented. Then, a generalization of the hypervolume indicator is pro-
posed (Section .) that unifies the three approaches but also enables to
consider other trade-offs that transform the three existing approaches into
one another. Then, algorithms based on these concepts are presented, and
finally, in Section . an empirical comparison on different test problems
and a real-world problem provides valuable insights regarding advantages
and disadvantages of the presented approaches.

. · Background

This section shows one possibility to extend the optimization model pro-
posed in Chapter  by the consideration of robustness; robustness of a
solution informally means, that the objective values scatter only slightly
under real conditions. These deviations, referred to as uncertainty, are
often not considered in multiobjective optimization. This section shows
one possibility to extend the optimization model proposed in Chapter  by
the consideration of uncertainty. As source of uncertainty, noise directly
affecting the decision variable x is considered. This results in a random
decision variable Xp, which is evaluated by the objective function instead
of x. As distribution of Xp, this chapter considers a uniform distribution:

Bδ(x) := [x1 − δ, x1 + δ]× . . .× [xn − δ, xn + δ] . (.)

The distribution according to Eq. . stems from the common specification
of fabrication tolerances. Of course, other probability distributions for Xp

are conceivable as well; of particular importance is the Gaussian normal
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distribution, as it can be used to describe many distributions observed in
nature. Although not shown in this chapter, the proposed algorithms work
with other uncertainties just as well.

Given the uncertainty Xp, the following definition of Deb and Gupta []
can be used to measure the robustness of x:

r(x) =
∥fw(Xp)− f(x)∥

f(x)
(.)

where f(x) denotes the objective values of the unperturbed solution, and
fw(Xp) denotes the objective-wise worst case of all objective values of the
perturbed decision variables Xp:

fw(Xp) =
(
max
Xp

f1(X
p), . . . ,max

Xp
fd(X

p) (.)

From the multi-dimensional interval Bδ the robustness measure r(x) may
be determined analytically (see Gunawan and Azarm []), or the interval
can be used to perform interval analysis [] as in Soares et al. []. If both
methods are not possible, for instance because knowledge of the objective
function is unavailable, random samples are generated within Bδ(x) and
evaluated to obtain an estimate of the robustness measure r(x).

. · Concepts for Robustness Integration

As already mentioned in Section . on page , existing robustness in-
tegrating approaches can roughly be classified into three basic categories:
(i) modifying the objective functions, (ii) using an additional objective, and
(iii) using an additional constraint. In this section, these approaches are
first translated to hypervolume-based search. Then, in Section .., the
three concepts are unified into a novel generalized hypervolume indicator
that also enables to realize other trade-offs between robustness and quality
of solutions.
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To translate these approaches to hypervolume-based search, one or multiple
of the three main components of hypervolume-based set preference need to
be changed:

. the preference relation is modified to consider robustness—this influences
the non-dominated sorting shown in Eq. . on page .

. The objective values are modified before the hypervolume is calculated.
. The definition of the hypervolume indicator itself is changed.

Depending on how the decision maker accounts for robustness, the prefer-
ence relation changes to ≼rob. Many different choices of ≼rob are possible,
however, it is assumed that the relation is consistent with both r(x) and ≼
according to the following definition:

Definition . (weak refinement of robustness and preference relation): Let r

denote a robustness measure, and let ≼ denote the preference relation on
solutions based on objective values only, e.g., weak Pareto dominance ≼par.
Additionally, let x ≼ao y := r(x) ≤ r(y) ∧ x ≼ y denote the intersection
of the relation induced by r(x) and the Pareto dominance relation, see Sec-
tion ... Then a robustness integrating preference relation ≼rob is a weak
refinement of ≼ao as stated in Section . on page , if for two solutions
x, y ∈ X the following holds:

(r(x) ≤ r(y) ∧ x ≼ y)

∧¬(r(y) ≤ r(x) ∧ y ≼ x)
⇒ x ≼rob y

In other words, if a solution x is preferred over y according to ≼, and in
addition is at least as robust as y (r(x) ≤ r(y)) but not vice versa, then
x ≼rob y must hold.

However, note that the relation ≼rob does not need to be a subset of ≼; in
fact, the relation can even get reversed. For example, provided solution x is
preferred over y given only the objectives x ≼ y, but considering robustness
y ≼rob x holds, for instance because y has a sufficient robustness level but
x does not.

The most simple choice of dominance relation compliant with Definition .
is ≼rob ≡ ≼par, that is to not consider robustness. This concept is used
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as reference in the experimental comparison in Section .. Depending on
the robustness of the Pareto set, optimal solutions according to ≼par may
or may not coincide with optimal solutions according to relations ≼rob that
consider robustness in some way.

In the following, other preference relations, corresponding to the approaches
A,B, and C on page , are shown. All resulting relations ≼rob thereby
are not total. Therefore, to refine the relation, is is proposed to apply
the general hypervolume-based procedure: first, solutions are ranked into
fronts by non-dominated sorting according to Section .. on page ;
after having partitioned the solutions, the normal hypervolume is applied
on the objective values alone or in conjunction with the robustness measure
(which case applies is mentioned when explaining the respective algorithm)
to obtain a preference on the solutions.

First, in Sections .., .., and .., it is investigated how the exist-
ing concepts can be transformed to and used in hypervolume-based search.
Then, in Section .., these three concepts are unified into a novel gen-
eralized hypervolume indicator that also enables to realize other trade-offs
between robustness and quality of solutions.

.. ·Modifying the Objective Functions

The first concept to incorporate robustness replaces the objective values
f(x) = (f1(x), . . . , fd(x)) by an evaluated version over all perturbations
fp(Xp) = (fp

1 (X
p), . . . , fp

d (X
p)), see Figure .(a). For example, the studies

by Branke [], Branke and Schmidt [], Tsutsui and Ghosh [] all employ
the mean over the perturbations, i.e.,

fp
i (X

p) =

∫
Xp

fi(x
p)pXp(xp)dxp

where pXp(xp) denotes the probability density function of the perturbed
decision variable Xp given x. Taking the mean will smoothen the objective
space, such that fp is worse in regions where the objective values are heavily
affected by perturbations; while, contrariwise, in regions where the objective
values stay almost the same within the considered neighborhood, the value
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Figure . Partitioning into fronts of ten solutions: a (robustness r(a) = ), b (), c (.), d (.),
e (), f (.), g (.), h (.), i (.), and j (.) for the three approaches presented in Section ..
The solid dots represents robust solutions at the considered level of η =  while the unfilled
dots represent non-robust solutions.

fp differs only slightly. Aside from the altered objective value, the search
problem stays the same. The regular hypervolume indicator in particular
can be applied to optimize the problem. The dominance relation implicitly
changes to ≼rob=≼repl with x ≼repl y :⇔ fp(x) 6 fp(y).

.. ·Additional Objective

Since the problems dealt with are already multiobjective by nature, a straight-
forward way to also account for the robustness r(x) is to treat the mea-
sure as an additional objective [, , ]. As for the previous approach,
this affects the preference relation and thereby non-dominated sorting, but
also the calculating of the hypervolume. The objective function becomes
fao = (f1, . . . , fd, r); the corresponding preference relation ≼rob=≼oa is ac-
cordingly

x ≼ao y :⇔ x ≼par y ∧ r(x) ≤ r(y) .

Considering robustness as an ordinary objective value has three advantages:
first, apart from increasing the dimensionality by one, the problem does not
change and existing multiobjective approaches can be used. Second, differ-
ent degrees of robustness are promoted, and third, no robustness level has to
be chosen in advance which would entail the risk of the selected level being
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infeasible, or that the robustness level could be much improved with barely
compromising the objective values of solutions. One disadvantage of this
approach is to not focus on a specific robustness level and potentially finding
many solutions whose robustness is too bad to be useful or whose objective
values are strongly degraded to achieve an unnecessary large degree of ro-
bustness. A further complication is the increase in non-dominated solutions
resulting from considering an additional objective, i.e., the expressiveness of
the relation is smaller than the one of the previously stated relation ≼repl
and the relation proposed in the next section.

Figure .(b) shows the partitioning according to ≼ao. Due to the different
robustness values, many solutions which are dominated according to objec-
tive values only—that is according to ≼par—become incomparable and only
two solutions e and g remain dominated.

.. ·Additional Robustness Constraint

The third approach to embrace the robustness of a solution is to convert
robustness into a constraint [, , ], which is then considered by adjust-
ing the preference relation affecting non-dominated sorting. Here a slight
modification of the definition of Deb and Gupta [] is used by adding the
additional refinement of applying weak Pareto dominance if two non-robust
solutions have the same robustness value. Given the objective function f(x)

and robustness measure r(x), an optimal robust solution then is

Definition . (optimal solution under a robustness constraint): A solution x∗ ∈
X with r(x∗) and f(x∗) denoting its robustness and objective values respec-
tively, both of which are to be minimized, is optimal with respect to the
robustness constraint η, if it fulfills x∗ ∈ {x ∈ X | ∀y ∈ X : x ≼con y} where

x ≼con y :⇔
r(x) ≤ η ∧ r(x) > η ∨
x ≼par y ∧ (r(x) ≤ η ∧ r(y) ≤ η ∨ r(x) = r(y)) ∨
r(x) < r(y) ∧ r(x) > η ∧ r(y) > η

(.)

denotes the preference relation for the constrained approach under the ro-
bustness constraint η.
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This definition for single solutions can be extended to sets using the principle
stated in Definition . on page :

Definition . (optimal set under a robustness constraint): A set A∗ ∈ Ψ with
|A∗| ≤ α is optimal with respect to the robustness constraint η, if it fulfills

A∗ ∈ {A ∈ Ψ | ∀B ∈ Ψ with |B| ≤ α : A 4con B}

where 4con denotes the extension of the relation ≼con (Eq. .) to sets, see
Definition . on page .

In the following, a solution x whose robustness r(x) does not exceed the
constraint, i.e., r(x) ≤ η, is referred to as robust and to all other solutions
as non-robust [].

Figure .(c) on page  shows the allocation of solutions to fronts ac-
cording to ≼con. The robustness constraint is set to η = 1, rendering all
solutions with r(x) ≤ 1 robust and with r(x) > 1 non robust, i.e., only h,i,
and j are robust. In cases where solutions are considered robust or share the
same robustness (a, b, and e), the partitioning corresponds to weak Pareto
dominance on objective values. In all the remaining cases, partitioning is
done according to the robustness value which leads to fronts independent of
the objectives and containing only solutions of the same robustness r(x).

.. ·Extension of the Hypervolume Indicator to Integrate Robustness Con-
siderations

The three approaches presented above all allow to consider robustness in
a way that is inherent to the algorithm. The first two approaches (Sec-
tions .. and ..) have a—predefined—way of trading off the robust-
ness with the objective values. On the other hand, the constraint approach
(Section ..) does not trade-off robustness, but rather optimizes with
respect to a given robustness constraint. In this section a new approach
is presented, which offers a larger degree of flexibility with respect to two
important points: firstly, the concept allows to realize different trade-offs,
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which are not inherent to the concept, but rather can be defined by the de-
cision maker, and secondly, even when trading-off robustness with objective
values the optimization can be focused on a target robustness level.

The three approaches presented so far rely on modifying the dominance re-
lation or the objective values to account for robustness. On solutions which
are incomparable, the hypervolume indicator on the objective values is then
used to refine the respective dominance relation. That means, the robust-
ness of solutions is not directly influencing the hypervolume calculation. In
the following, a new concept is proposed based not solely on modifying the
dominance relation, but more importantly also on an extension of the reg-
ular hypervolume indicator. The novel robustness integrating hypervolume
indicator Iφ,w

H (A, R) is based on the objective values of solutions in A, but
also on the robustness values of the solutions. An additional desirability
function thereby allows to trade-off robustness and quality of solutions in
almost any way, including the three existing approaches presented in Sec-
tions .. to .., as well as not considering robustness at all. This offers
the possibility to trade-off robustness with quality of solutions given by the
objective values, but at the same time to optimize with respect to a target
robustness level.

Methodology
The idea behind Iφ,w

H is to modify the attainment function αA(z) of the
original hypervolume indicator definition, see Definition . on page ,
in such a way that it reflects the robustness of solutions. In the original
definition of the attainment function, αA(z) is either 0 or 1; for any objec-
tive vector z not dominated by A, the attainment function is zero, while
for a dominated vector z, αA(z) = 1 holds. Hence, a solution x ∈ A always
contributes % to the overall hypervolume, regardless of the robustness
of the solution. To integrate robustness, the codomain of αA(z) is extended
to all values between 0 and 1. The new robustness integrating attainment
function αφ

A thereby is still zero for any objective vector z not dominated
by A. In contrast to Definition ., however, dominated objective vectors
z are accounted based on the most robust solution dominating z. A desir-



.. Concepts for Robustness Integration 

ability function of robustness φ determines the value of solutions, ranging
from  (no contribution) to  (maximum influence).

Definition . (Desirability function of robustness): Given a solution x ∈ A with
robustness r(x) ∈ R≥0, the desirability function φ : R≥0 → [0, 1] assesses
the desirability of a robustness level. A solution x with φ(r(x)) = 0 thereby
represents a solution of no avail due to insufficient robustness. A solution
y with φ(r(y)) = 1, on the other hand, is of maximum use, and further
improving the robustness would not increase the value of the solution.

Provided a function φ, the attainment function can be extended in the
following way to integrate robustness:

Definition . (robustness integrating attainment function αφ
A ): Given a set of

solutions A ∈ Ψ, the robustness integrating attainment function αφ
A : Z →

[0, 1] for an objective vector z ∈ Z, and a desirability function φ : r(x) 7→
[0, 1] is

αφ
A(z) :=

φ
(

min
x∈A,f(x)6z

r(x)
)

if A 0 {z}

0 otherwise

Hence, the attainment function of z correspond to the desirability of the
most robust solution dominating z; and is  if no solution dominates z.

Finally, the robustness integrating hypervolume indicator corresponds to the
established definition except for the modified attainment function according
to Definition .:

Definition . (robustness integrating hypervolume indicator): The robustness
integrating hypervolume indicator Iφ,w

H : Ψ → R≥0 with reference set R,
weight function w(z), and desirability function φ is given by

Iφ
H(A) :=

∫
Rd

αφ
A(z)w(z)dz (.)

where A ∈ Ψ is a set of decision vectors.
The definition of desirabilty function used in this chapter is compliant with the definition known from statistical
theory, cf. Abraham [].
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In the following, Iφ,w
H is used to refer to the robustness integrating hyp-

ervolume indicator, not excluding an additional weight function to also
incorporate user preference. The desirability function φ not only serves
to extend the hypervolume indicator, but implies a robustness integrating
preference relation:

Definition .: Let x, y ∈ X be two solutions with robustness r(x) and r(y) re-
spectively. Furthermore, let φ be a desirability function φ : r(x) 7→ φ(r(x)).
Then x weakly dominates y with respect to φ, denoted x ≼φ y, iff x ≼par y

and φ(r(x)) ≥ φ(r(y)) holds.

Since a solution x can be in relation ≼φ to y only if ≼φ holds, ≼φ is a
subrelation of ≼par, and generally increases the number of incomparable
solutions. In order that ≼φ is a reasonable relation with respect to Pareto
dominance and robustness according to Definition ., φ has to be mono-
tonically decreasing as stated in the following Theorem:

Theorem .: As long as φ is a (not necessarily strictly) monotonically de-
creasing function, and smaller robustness values are considered better, the
dominance given in Definition . is a weak refinement according to Defini-
tion .. Furthermore, the corresponding robustness integrating hypervolume
indicator given in Definition . (a) induces a refinement of the extension
of ≼φ to sets, and (b) is sensitive to any improvement of non dominated
solutions x with φ(r(x)) > 0 in terms of objective values or the desirability
of its robustness.

Proof. Part : φ is compliant with Definition .: let x and y be two so-
lutions for which x ≼par y and r(x) ≤ r(y) holds. By the monotonicity
property of φ if follows φ(r(x)) ≥ φ(r(y)). Since also x ≼par y, it follows
x ≼φ y.

Part : the robustness integrating hypervolume is compliant with the ex-
tension of ≼φ to sets: let A, B ∈ Ψ denote two sets with A ≼rob B. More
specifically this means, for all y ∈ B ∃x ∈ A such that x ≼par y and
r(x) ≤ r(y). Now let y′

B(z) := argminy∈B,f(y)6z r(y). Then ∃x′
A(z) ∈ A

with x′
A(z) ≼rob y′

B(z). This leads to f(x′
A(z)) 6 f(y′

B(z)) 6 z and
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x

(a) original set A

'x
'x x

(b) objective values of x
improved

''x
( ( )) ( ( ))φ r x φ r x′′ >

(c) robustness of x improved

Figure . The robustness integrating hypervolume indicator is sensitive to improvements
of objective values (b) as well as to increased robustness desirability (c).

r(x′
A) ≤ r(y′

B). The latter boils down to φ(r(x′
A)) ≥ φ(r(y′

B)), hence
αφ

A(z) ≥ αφ
B(z) for all z ∈ Z, and therefore Iφ,w

H (A) ≥ Iφ,w
H (B) holds.

Part : Definition . is sensitive to improvements of objective values and
desirability: let x ∈ A denote the solution which is improved, see Fig-
ure .(a). First, consider the case where in a second set A′, x is replaced
by x′ with r(x′) = r(x) and x′ ≺par x. Then there exists a set of objec-
tive vectors W which is dominated by f(x′) but not by f(x). Because of
φ(r(x)) > 0, the gained space W increases the overall hypervolume, see
Figure .(b). Second, if x is replaced by x′′ with the same objective values
but a higher desirability of robustness, φ(r(x′′)) > φ(r(x)), the space solely
dominated by x′′ has a larger contribution due to the larger attainment
value in this area, and again the hypervolume indicator increases, see Fig-
ure .(c).

Note that choices of φ are not excluded for which the attainment func-
tion αφ

A(z) can become 0 even if a solution x ∈ A dominates the respective
objective vector z—namely if all solution dominating z are considered infea-
sible due to their bad robustness. Provided that φ is chosen monotonically
decreasing, many different choices of desirability are possible. Here, the
following class of functions is proposed, tailored to the task of realizing
the approaches presented above. Besides the robustness value, the function
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takes the constraint η introduced in Section .. as an additional argument.
A parameter θ defines the shape of the function and its properties:

φθ(r(x), η) =


(

r(x)
rmax

− 1
)

θ + (1 + θ)H1(η − r(x)) θ ≤ 0

exp
(
3 · r(x)−η

η log(1−θ)

)
0 < θ < 1, r(x) > η

1 otherwise
(.)

where H1(x) denotes the Heaviside function, and rmax denotes an upper
bound of the robustness measure. The factor 3 in the exponent is chosen
arbitrarily, and only serves the purpose of producing a nicely shaped func-
tion. By changing the shape parameter θ, different characteristics of φ can
be realized that lead to different ways of trading off robustness and objective
values, see Figure .:

À θ = 1: For this choice, φ1(r(x), η) ≡ 1. This means the robustness of
solutions is not considered at all.

Á 0 < θ < 1: All solutions with r(x) ≤ η are maximally desirable in terms of
robustness. For non-robust solutions, the desirability decreases exponen-
tially with exceedance of r(x) over η, where smaller values of θ lead to a
faster decay. This setting is similar to the simulated annealing approach
that will be presented in Section .. with two major differences: first,
the robustness level is factored in deterministically, and secondly, the
robustness level is traded-off with the objective values, meaning a better
quality of the latter can compensate for a bad robustness level.

Â θ = 0: In contrast to case Á, all solutions exceeding the robustness con-
straint are mapped to zero desirability, and therefore do not influence
the hypervolume calculation. This corresponds to the original constraint
approach from Section ...

Ã −1 < θ < 0: Negative choices of θ result in robust solutions getting dif-
ferent degrees of desirability, meaning only perfectly robust solutions
(r(x) = 0) get the maximum value of 1. The value linearly decreases

H(x) =

{
 x < 

 x ≥ 0
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priate. The extended hypervolume indicator constitutes the most flexible
concept, as it allows to realize arbitrary desirability functions the decision
maker has with respect to robustness of a solution. All three conventional
approaches are thereby special realizations of desirability functions, and can
be realized by the robustness integrating hypervolume indicator.

. · Search Algorithm Design

Next, algorithms are presented that implement the concepts presented in
Section .. First, the three conventional concepts are considered, where
for the constraint approach three modifications are proposed. Secondly, the
generalized hypervolume indicator is tackled, and an extension of the Hyp-
ervolume Estimation Algorithm for Multiobjective Optimization (HypE) is
derived such that the indicator is applicable to many objective problems.

.. ·Modifying the Objective Functions

As discussed in Section .., when modifying the objective functions to
consider robustness, any multiobjective algorithm—hypervolume-based al-
gorithms in particular—can be applied without any adjustments necessary.
Hence, for instance the Regular Hypervolume-based Algorithm (RHV) as
outlined in Algorithm  on page  can be employed as is.

.. ·Additional Objectives

Only minor adjustments are necessary to consider robustness as an ad-
ditional objective: since the number of objectives increases by one, the
reference point or the reference set of the hypervolume indicator need to
be changed. In detail, each element of the reference set needs an extra
coordinate resulting in d + 1 dimensional vectors. Due to the additional
objective, the computational time increases, and one might have to switch
to approximations schemes, e.g., use HypE (see Chapter ) instead of the
exact hypervolume calculation, as for instance in in RHV or in [, ].
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.. ·Additional Robustness Constraints

For the constraint concept, first a baseline algorithm is presented that opti-
mizes according to Definition .. Then, three advanced methods are shown
that attenuate potential premature convergence. Finally, in Section ..,
a general version is proposed that enables to optimize multiple constraints
with predefined number of solutions in parallel.

Baseline Approach
In order to realize the plain constraint approach, as illustrated in Sec-
tion .., in hypervolume-based search, the only change to be made con-
cerns the dominance ranking, where the relation shown in Eq. . is em-
ployed instead of ≼par, see Figure .(c). In the constraint approach as
presented in Section .., a robust solution thereby is always preferred
over a non-robust solution regardless of their respective objective value.
This in turn means, that the algorithm will never accept a non robust solu-
tion in favor of a more robust solution. Especially for very rigid robustness
constraints η ≪ 1 this carries a certain risk of getting stuck early on in a
region with locally minimal robustness, which does not even need to fulfill
the constraint η. To attenuate this problem, next three modifications of the
baseline algorithm are proposed that loosen up the focus on a robustness
constraint.

Advanced Methods
The first modification of the baseline approach is based on relaxing the
robustness constraint at the beginning of search; the second algorithm does
not introduce robustness into some parts of the set which is thus allowed to
converge freely even if its elements exceed the robustness constraint. Finally,
a generalization of the constraint method is proposed that allows to focus
on multiple robustness constraints at the same time.

Approach  | Simulated Annealing. The first algorithm uses the principle of
simulated annealing when considering robustness with respect to a con-
straint η. In contrast to the baseline approach, also solutions exceeding the
robustness constraint can be marked robust. The probability in this case
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Figure . Partitioning into fronts of the same ten solutions from Figure . for the two
advanced constraint methods (a), (b), and for the generalized hypervolume indicator. The
solid dots represents robust solutions at the considered level of η =  while the unfilled dots
represent non-robust solutions. For (a), solutions d, f, and c are classified robust too.

thereby depends on the difference of the robustness r(x) to the constraint
level η, and on a temperature T :

P (x robust) =

1 r(x) ≤ η

u ≤ e−(r(x)−η)/T otherwise

where u ∼ U(0, 1) is uniformly distributed within 0 and 1. The temperature
T is exponentially decreased every generation, i.e., T = T0 · γg where g

denotes the generation counter, γ ∈]0, 1[ denotes the cooling rate, and T0

the initial temperature. Hence, the probability of non robust solutions being
marked robust decreases towards the end of the evolutionary algorithm.
In the example shown in Figure ., the solutions d, f , and c are classified
as robust—although exceeding the constraint η = 1. Since these solutions
Pareto-dominate all (truly) robust solutions, they are preferred over these
solutions unlike in the baseline algorithm, see Section ...

Approach  | Reserve Approach. The second idea to overcome locally robust
regions is to divide the population into two sets: on the first one no ro-
bustness considerations are imposed, while for the second set (referred to as
the reserve) the individuals are selected according to the baseline constraint
concept. This enables some individuals, namely those in the first set, to
optimize their objectives values efficiently. Although these individuals are
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very likely not robust, they can improve the solutions from the second set in
two ways: (i) a high quality solution from the first set gets robust through
mutation or crossover and thereby improves the reserve, (ii) the objective
values of a robust solution are improved by crossover with an individual
from the first set. However, since at the end only the reserve is expected
to contain individuals fulfilling the constraint, one should choose the size of
the reserve β to contain a large portion of the population, and only assign
few solutions to the first set where robustness does not matter.

In detail, the reserve algorithm proceeds as follows. First, the membership
of a solution to the reserve is determined; a solution x is included in the
reserve, denoted by the indicator function χrsv(x), if either it is robust and
there are less than β − 1 other solutions that are also robust and dominate
x; or if x is not robust but still is among the β most robust solutions. Hence

χrsv(x) = 1 :⇔r(x) ≤ η ∧ |{y ≼par x | y ∈ X, r(y) ≤ η| ≤ β ∨
r(x) > η ∧ |{y | y ∈ X, r(y) ≤ r(x)| ≤ β

Given the membership to the reserve, the preference relation is:

x ≼rsv y :⇔
χrsv(x) = 1 ∧ χrsv(y) = 0 ∧
¬(χrsv(x) = 0 ∧ χrsv(y) = 1) ∧
x ≼par y

For the example in Figure .(b) let the reserve size be β = 4, leaving one
additional place not subject to robustness. Because there are fewer solutions
which fulfill the robustness constraint than there are places in the reserve,
all three robust solutions are included in the reserve, see dashed border. In
addition to them, the next most robust solution (d) is included to complete
the reserve. Within the reserve, the solutions are partitioned according to
their objective value. After having determined the reserve, all remaining
solutions are partitioned based on their objective values.

Approach  | Multi-Constraint Approach. So far, robustness has been consid-
ered with respect to one robustness constraint η only. However, another
scenario could include the desire of the decision maker to optimize multiple
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robustness constraint at the same time. This can make sense for different
reasons: (i) the decision maker wants to learn about the problem landscape,
i.e., he likes to know for different degrees of robustness the objective val-
ues that can be achieved; (ii) the decision maker needs different degrees
of robustness, for instance because the solution are implemented for sev-
eral application areas that have different robustness requirements, and (iii)
premature convergence should be avoided.

To optimize according to multiple robustness constraints, the idea is to
divide the population into several groups, which are subject to a given con-
straint. In the following the baseline algorithm from Section .. is used as
a basis. The proposed concept not only allows to optimize different degrees
of robustness at the same time, but also to put a different emphasis on the
individual classes by predefining the number of solutions that should have a
certain robustness level. Specifically, let C = {(η1, s1), . . . , (ηk, sl)} denote
a set of l constraints η1, . . . , ηl where for each constraint the user defines the
number of individuals si ∈ N>0 that should fulfill the respective constraint
ηi (excluding those individuals already belonging to a more restrictive con-
straint). Hence, c1+ · · ·+cl = |P |, and without loss of generality let assume
η1 < η2 < · · · < ηl. The task of an algorithm is then to solve the following
problem:

Definition . (optimal set undermultiple robustness constraint): Consider C =

{(η1, s1), . . . , (ηk, sl)}, a set of l robustness constraints ηi with corresponding
size si. Then a set A∗ ∈ Ψα, i.e., |A∗| ≤ α, is optimal with respect to C if
it fulfills A∗ ∈ {A ∈ Ψα | ∀B ∈ Ψα : A 4C B} where 4C is given by

A 4C B :⇔ ∀(ηi, si) ∈ C : ∀B′ ∈ Bsi ∃A′ ∈ Asi s.t. A′ 4ηi B′

where 4ηi denotes the extension of any relation proposed in Section . to
sets, as stated in Eq. ..

In order to optimize according to Definition ., Algorithm  is proposed:
beginning with the most restrictive robustness level ηi, i = 1, one after
another si individuals are added to the new population. Thereby, the in-
dividual increasing the hypervolume at the current robustness level ηi the
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Require: Population P , list of constraint classes C = {(η1, s1), . . . , (ηl, sl)}, with
η1 ≤ · · · ≤ ηl.

: P ′ = {}
: for i = 1 to l do (iterate over all classes (ηi, si) ∈ C)
: for j = 1 to si do (fill current class)
: x′ ← argmaxx∈P \P ′ I

φ(·,ηi),w
H (x ∪ P ′, R)

: if I
φ(·,ηi),w
H (x′ ∪ P ′, R) = I

φ(·,ηi),w
H (P ′, R) then (has no contribution)

: x′ ← argminx∈P \P ′ r(x) (get the most robust instead)
: P ′ ← P ′ ∪ x′

: return P ′

Algorithm  Classes algorithm based on the greedy hypervolume improvement principle.
Beginning with the most robust class, solutions are added to the final population P’ that
increase the hypervolume at the respective level the most, given the individuals already in
P’.

most is selected. If no individual increases the hypervolume, the most robust
solution is chosen instead.

.. ·HypE for the Generalized Hypervolume Indicator

To optimize according to the generalized hypervolume indicator, the same
greedy procedure as used by the Regular Hypervolume-based Algorithm
(RHV) presented in Section .. on page  can be used. Thereby, two
differences arise:

. first off, non-dominated sorting is done according to ≼φ (Definition .)
and not with respect to ≼par. In Figure ., for instance, the solutions d

and e are in different fronts than a for ≼par (Figure .(a)), but belong
to the same front for ≼φ (Figure .(a));

. secondly, the hypervolume loss is calculated according to the new indi-
cator, i.e., the loss is Iφ,w

H (A, R) − Iφ,w
H (A\x, R), see gray shaded areas

in Figures .(a) and .(b).

In this chapter, however, the advanced selection procedure employed by
HypE is used (see Chapter ) which rather than considering the loss when



.. Search Algorithm Design 

r

a

b

c

d

d

e

(a)

r

a, 1

b, 0.9

c, 1.1

d, 0.8

d, 0.4

e, 0.5

(b)

r

a, 1

b, 0.9

c, 1.1

d, 0.8

d, 0.4

e, 0.5

(c)

Figure . In (a) the affected hypervolume region when removing b is shown if robustness
is not considered (dark gray). Adding the consideration of robustness (values next to solution
labels), the affected region increases (b). Foreseeing the removal of two other solutions apart
from b, other regions dominated by b (light gray areas) also need to be considered (c).

removing the respective solution, tries to estimates the expected loss taking
into account the removal of additional solutions, see Figure .(c).

Although the exact calculation of this fitness is possible, in this chapter the
focus is on its approximation by Monte Carlo sampling, as also implemented
in HypE. The basic idea is again to first determine a sampling space S. From
this sampling space, m samples then are drawn to estimate the expected
hypervolume loss.

Introducing Robustness to HypE. HypE needs to be modified in order to
be applicable to the robustness integrating hypervolume indicator (Defini-
tion .) due to the following observations. In case of the regular hyp-
ervolume indicator, a dominated region is accounted % as long as at
least one point dominates it. So the only case HypE has to consider is
removing all points dominating the portion altogether. For different points
having different degrees of robustness, the situation changes: even though
a partition dominated by multiple points would stay dominated if one re-
moves not all dominating points, the robustness integrating hypervolume
might nevertheless decrease due to the non bivariate attainment function.
For example, if the most desirable point in terms of robustness is removed,
then the attainment function is decreased and thereby also the robustness
integrating hypervolume indicator value, see Theorem ..
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Distributing Hypervolume among Solutions. Let A denote the set of points
and AU ⊆ A those solutions, that dominate the region U under consider-
ation. To illustrate the extended calculation of the robustness integrating
HypE, consider ten points A = {x1, . . . , x10}. The first four points AU =

{x1, . . . , x4} dominate the region U = H({x1, . . . , x4}, {x1, . . . , x10}, R).
Additionally, let r(x1) ≤ r(x2) ≤ r(x3) ≤ r(x4). First, a few simple cases
are considered before presenting the final, and rather intriguing, formula
to calculate the fitness of a point. First of all, it is investigated how much
the robustness integrating hypervolume Iφ

A decreases when removing points
from the set AU and how to attribute this loss to individuals. Assume x2

or any other point which is less robust than x1 is removed. In this case,
the robustness integrating hypervolume does not decrease at all, since the
attainment function depends only on the most robust point dominating the
partition, in our case on x1. Hence, a removal only affects the hypervol-
ume, if no other point dominating the partition U at least as robust as the
removed point remains in the population.

On the other hand, lets assume only the most robust solution x1 is removed.
By doing this, the hypervolume decreases by λ(U) · (φ(r(x1)) − φ(r(x2))),
which is non zero if the robustness of x1 is more desirable than the one of
x2. Clearly, this loss has to be fully attributed to point x1, as no other point
is removed. Now lets extend this to more than one point being removed.
Assume points x1, x2, and x4 are removed. As seen before, the loss of
x4 does not affect the hypervolume since x3 (which is more robust) stays
in the set. So in a set of points remaining in the population, the most
robust individual sets a cutoff. For all individuals above this cutoff, i.e., for
all individuals being less robust, the hypervolume does not decrease if these
individuals are removed. The total loss of Iφ,w

H is λ(U)·(φ(r(x1))−φ(r(x3))).
The question now is, how to distribute the loss among solutions. The share
λ(U) · (φ(r(x1))−φ(r(x2))) is only due to x1, hence it is fully attributed to
x1. The share between φ(x2) and φ(x3) is dominated by both x1 and x2,
so the portion is evenly split. This procedure continues for all robustness
levels below the cutoff, see Figure .(b).
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Figure . Illustration of class cv:
from p points, n dominate the re-
gion under consideration. The cut-
off point is denoted as v. Besides
the considered solution, q points
need to be removed below the cut-
off. In total k points are removed.
In the example, p = , v = , q = ,
n = , and k = .
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Probability of Loosing Hypervolume. Now that it is known how to distribute
the partition U among points for a particular selection of points, one has
to consider all possible subsets of AU , i.e., subsets of points dominating U ,
and calculate the probability that the subset is lost. Let p denote the total
number of points, let n := |AU | denote the number of points dominating
U , and let k denote the number of points to be removed, i.e., k = p − α.
Not all

(n
k

)
subsets have to be considered separately, but they can be sum-

marized into classes cv with 0 ≤ v ≤ n − 1, where v denotes the position
of the cutoff level, see Figure .. More specifically, cv contains all sub-
sets where the most robust solution from AU not being removed is the
vth least robust solution among all solutions in AU . For v = 0, all solu-
tions dominating U are removed. For example, let (χ1, . . . , χp) represent
different subsets of A, where χi ∈ {0, 1} denotes the absence or presence
respectively of solution xi, and χi = × denotes both cases (don’t care). In
the considered example, c0 = (0, 0, 0, 0,×, . . . ,×), c1 = (0, 0, 0, 1,×, . . . ,×),
c2 = (0, 0, 1,×,×, . . . ,×), and c3 = (0, 1,×,×,×, . . . ,×). Note that as for
the regular HypE calculation, the fitness of a solution is determined under
the assumption that this solution is removed, therefore, the subset c4 (no
solution removed from AU ) is not possible.

To derive the probability that a subset being removed belongs to the class
cv, consider one particular way this can happen: the first q individuals are
removed from below the cutoff, i.e., are more robust. The remaining k − q

points are then removed from above the cutoff or from the set A\AU . This
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is one of
(k−1

q

)
equally probable combinations to obtain a cutoff level v, so

that the obtained probability has to be multiplied by
(k−1

q

) in the end.

A cutoff of v means, besides the considered point q = n − v − 1 points are
removed from below the cutoff level. The probability that these q individuals
are removed in the first q removal steps is:

P1 =
q

p− 1
· q − 1

p− 1
· · · 1

p− (q − 1)
=

q! · (p− q)!

(p− 1)!
. (.)

For the remaining k−1−q points, any of the p−n individuals not dominating
the partition may be selected, as well as any of the v − 1 individuals above
the cutoff, i.e., solutions less robust than the cutoff. The cutoff itself may
not be removed as this would change the level v. So the probability for the
second portion of points to be picked accordingly is:

P2 =
p− n + v − 1

p− q − 1
· p− n + v − 2

p− q − 2
· · · p− k

p− k + 1
(.)

=
(p− q − 2)!(p− k)!

(p− q − 1)!(p− k − 1)!

Multiplying P1 (Eq. .), P2 (Eq. .) and the number of combinations(k−1
q

)
gives the final probability (note that v = n− q − 1)

Pv(p, q, k) = P1 · P2 ·
(

k − 1

q

)

=
q! · (p− q)!

(p− 1)!
· (p− q − 2)!(p− k)!

(p− q − 1)!(p− k − 1)!
· (k − 1)!

q!(k − 1− q)!

= (p− q)(p− k)
(p− q − 2)!

(p− 1)!

(k − 1)!

(k − 1− q)!

= (p− 1)(p− k)
p−1∏

i=p−q−1

1

i

k−1∏
i=k−q

i . (.)

Again, note that the solutions whose fitness needs to be determined, is assumed to be removed and belongs to the
first q individuals, otherwise it would induce no loss in hypervolume. That is why the binomial coefficient considers
the k- set instead of k.
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For v = 0 and p = n the last line is undefined, in this case, P0(n, q, k) = 1

holds.

Example .: Consider four solutions a, b, c and d with robustness r(a) =

0.8, r(b) = 0.9, r(c) = 1.05 and r(d) = 1.2. Let the robustness constraint be
η = 1, and let the desirability φ be defined according to Eq. . with θ = 0.1

and assume two solutions need to be removed. Now consider a sample
dominated by a, c and d. This gives p = 4, n = 3 and k = 2. Since only two
individuals are to be removed, the probability for having v = 0, i.e, all three
individuals dominating the sample are removed, is 0. The probability for
v = 1, i.e., another solution dominating the sample is removed besides the
considered individual, is 1/3. In this case, the first robustness layer extends
from r(a) = .8 to r(c) = 1.05. This gives a value of 1

3

(
φ0.1(.8)−φ0.1(1.05)

)
=

0.253 which is completely attributed to a since only this solution reaches
the degree of robustness. The second layer extends from r(c) = 1.05 to
r(d) = 1.2 and half of the value 1

3

(
φ0.1(1.05)−φ0.1(1.2)

)
= 0.079 is added to

the fitness of a and c respectively. The probability for v = 2 is 2/3 (either b

or d can be removed, but not c). The contribution 2
3

(
φ0.1(.8)−φ0.1(1.05)

)
=

0.506 is completely added to the fitness of a. ◦

Sampling Routine. The HypE routine to consider robustness corresponds to
the regular HypE algorithm as listed in Algorithm  on page . The
changes to be made only affect Lines  to . Algorithm  shows the new
code replacing Lines  to  of the original definition. The conditional
statement “if |AU | ≤ k then” in Line  of the original algorithm is omitted,
as the hypervolume might decrease even if not all individuals in AU are
removed. Secondly, the advanced distribution of the sample according to
different robustness levels is used (two loops in Line  and ). Thirdly,
the probability α is changed and not only depends on k, but also on the
population size p and the current cutoff level v.

Desirability Function. The robustness integrating HypE relies on a desirabil-
ity function φ. This chapter uses the class of functions stated in Eq. ..
The parameter θ of this function is thereby either fixed, or geometrically
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: · · ·
: if ∃r ∈ R : s 6 r then
: p← |P |
: AU ←

∪
a∈P, f(a)≤s{f(a)}

: e← elements of AU sorted such that r(e1) ≤ · · · ≤ r(en) (every hit is
relevant)

: n← |AU | (number of points dominating the partition)
: for v = 0 to n− 1 do (check all cutoff levels)
: q ← n− v − 1
: α← Pv(p, q, k) (according to Eq. .)
: for f = 1 to n− v do (update fitness of all contributing solutions)
: if f equals n− v then (least robust solution)
: inc← α · (φ(r(ef ))
: else (slice to less robust solution f + 1)
: inc← α · (φ(r(ef )− φ(r(ef+1)))

: for j = 1 to f do (update fitness)
: (a, v)← (a, v) ∈ F where a ≡ ef

: F ′ ←
(
F ′ \ (a, v)

)
∪ (a, v + inc/f)

: F ← F ′

: · · ·

Algorithm  Hypervolume-Based Fitness Value Estimation for Iφ,wH
-
--changes to incorporate

robustness

decreased in a simulated annealing fashion from 1 to θend ∈]0, 1], i.e., in
generation g, θ corresponds to θg = γg with γ = gmax

√
θend.

. · Experimental Validation

In the following experiments, the algorithms from Section . are compared
on two test problem suites and on a real world bridge truss problem pre-
sented in Appendix E.. The different optimization goals of the approaches
rule out a fair comparison as no single performance assessment measure
can do justice to all optimization goals. Nonetheless, the approaches are
compared on the optimality goal shown in Definition ., which will favor
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the constraint approach. Yet, the approach presented in Section .. is ex-
cluded from the experimental comparison, since the approach is not based
on a robustness measure r(x).

The following goals will be pursued by visual and quantitative comparisons:

. the differences between the three existing approaches (see page ) are
shown;

. it is investigated, how the extended hypervolume approach performs, and
how it competes with the other approaches, in particular, the influence
of the desirability function is investigated;

. it is is examined, whether the multi-constraint approach from Section ..
has advantages over doing independent runs or considering robustness
as an additional objective.

.. ·Experimental Setup

The performance of the algorithms is investigated with respect to optimizing
a robustness constraint η. The following algorithms are compared:

• as a baseline algorithm, HypE without robustness consideration, denoted
HypEno. rob.;

• Algao using an additional objective;
• the constraint approaches from Section .., i.e., baseline Algcon, simu-

lated annealing Algsim. ann., reserve Algrsv, and multiple classes Algclasses;
• HypE using the generalized hypervolume indicator, see Section ...

So far, the focus was on environmental selection only, i.e., the task of select-
ing the most promising population P ′ of size α from the union of the parent
and offspring population. To generate the offspring population, random
mating selection is used, although the principles proposed for environmen-
tal selection could also be applied to mating selection. From the mating
pool Simulated Binary Crossover (SBX) and Polynomial Mutation, see Deb
[], generate new individuals.

The first test problem suite used is by the Walking Fish Group (WFG)
[], and consists of nine well-designed test problems featuring different
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properties that make the problems hard to solve—like non-separability, bias,
many-to-one mappings and multimodality. However, these problems are not
created to have specific robustness properties and the robustness landscape
is not known. For that reason, six novel test problems are proposed called
Bader-Zitzler (BZ) that have different, known robustness characteristics,
see Appendix E.. These novel problems allow to investigate the influence
of different robustness landscapes on the performance of the algorithms. In
addition to the two test problems suites, the algorithms are compared on a
real world truss building problem stated in Appendix E., where also addi-
tional results on this problem are presented. For the robustness integrating
HypE, see Section .., the variant using a fixed θ is considered (denoted
by HypEθf ), as well as the variant with θ decreasing in each generation to
θend. This latter variant is referred to as HypEθenda.

Experimental Settings
The parameters ηmutation and ηcrossover of the Polynomial Mutation, and
SBX operator respectively, as well as the corresponding mutation and cross-
over probabilities, are listed in Table .. Unless noted otherwise, for each
test problem  runs of   generations are carried out. The population
size α and offspring size µ are both set to . For the BZ robustness test
problems, see Appendix E., the number of decision variables n is set to ,
while for the WFG test problems the recommendations of the authors are
used, i.e., the number of distance related parameters is set to l = 20 and
the number of position related parameters k is set to  in the biobjective
case, and to k = 2 · (d−1) otherwise. Except for Figure ., two objectives
are optimized.

In all experiments on the two test problem suites, the extend of the neigh-
borhood Bδ is set to δ = 0.01. To estimate fw(x, δ), for every solution 
samples are generated in the neighborhood of x and f̂w(x, δ) is determined
according to Eq. .. After each generation, all solutions are resampled,
even those that did not undergo mutation. This prevents that a solution
which, only by chance, reaches a good robustness estimate, persists in the
population. For the real world bridge problem, on the other hand, a problem
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Table . Parameter setting used for the experimental validation. The number of generations
was set to   for the test problems, and to   for the bridge problem.

parameter value

ηmutation 
ηcrossover 
individual mutation prob. 
individual recombination prob. .
variable mutation prob. /n
variable recombination prob. 

continued

population size α 
number of offspring µ 
number of generations g  / 
perturbation δ .
no. of neighboring points H 
neighborhood size δ .

specific type of noise is used that allows to analytically determine the worst
case, see Appendix E..

For the Algsim. ann. approach the cooling rate γ is set to .. The refer-
ence set of the hypervolume indicator is set to R = {r} with r = (3, 5)

on WFG, with r = (6, 6) on BZ, and with r = (0, 2000) on the bridge
problem. The Algclasses-approach proposed in Section .. uses the fol-
lowing constraints: for BZ (η1, . . . , η5) = (.01, .03, .1, .3,∞). For WFG,
due to generally higher robustness levels on these test problems, the classes
were set to (η1, . . . , η5) = (.001, .003, .01, .03,∞). In both cases, the class
sizes were (s1, . . . , s5) = (4, 4, 6, 4, 6) which gives a populations size of .
For the bridge problem, the classes are set to (.001, .01, .02, 0.1,∞) with 
individuals in each class. The size of the bridge is set to ,,,, and 
decks, i.e., spanning a width of m up to m. For comparisons with a
single robustness constraint, it is set to η = 0.02. For each comparison, 
runs of   generations have been performed.

In this chapter, two types of uncertainty are used. Firstly, for the test
problems, where x ∈ Rn holds, Xp is assumed to be uniformly distributed
within Bδ(x) according to Eq. .. Random samples are generated within
Bδ(x), and evaluated to obtain an estimate of the robustness measure r(x).
Secondly, for the real world application, a problem specific type of noise is
considered as outlined in Appendix E. on page . For this second type
For this problem, the first objective is to be maximized.
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of noise, along with the structure of the problem, the worst case can be
determined analytically.

Performance Assessment
For all comparisons, the robustness of solutions has to be assessed. To this
end,   samples are generated within Bδ. For each objective separately,
the % largest values are then selected. By these  values, the tail of
a Generalized Pareto Distribution is fitted, see Kotz and Nadarajah [].
The method of moments is thereby used to obtain a first guess, which is
then optimized maximizing the log-likelihood with respect to the shape
parameter k and the logarithm of the scale parameter, log(σ). Given an
estimate for the parameters k̂ and σ̂ of the Generalized Pareto Distribution,
the worst case estimate f̂w

i (x) is then given by

f̂w
i (x) =

θ̂ − σ̂/k̂ k̂ < 0

∞ otherwise

where θ̂ denotes the estimate of the location of the distribution given by the
smallest value of the % percentile.

The performance of algorithms is assessed in the following manner: at first,
a visual comparison takes place by plotting the objective values and ro-
bustness on the truss bridge problem (Appendix E. on page ). The
influence of θ of the robustness integrating HypE is then further investi-
gated on BZ. Secondly, all algorithms are compared with respect to the
hypervolume indicator at the optimized robustness level η. To this end,
the hypervolume of all robust solutions is calculated for each run. Next,
the hypervolume values of the different algorithms are compared using the
Kruskal-Wallis test and post hoc applying the Conover-Inman procedure
to detect the pairs of algorithms being significantly different. The perfor-
mance P (Ai) of an algorithm i then corresponds to the number of other
algorithms, that are significantly better, see Appendix A on page  for
Note that the maximum likelihood approximation is only efficient for k ≥ -½ []. Preliminary studies, however, not
only showed k ≥ -½ for all test problems considered, but also revealed that k is the same for all solutions of a given
test problem.



 Chapter . Robustness in Hypervolume-Based Search

Table . Comparison of
HypE.a and HypE.f to different
other algorithms for the hyper-
volume indicator. The number
represent the performance
score P(Ai), which stands for
the number of contenders
significantly dominating the
corresponding algorithm Ai , i.e.,
smaller values correspond to
better algorithms. Zeros have
been replaced by “·”.
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BZ  ·  · ·   
BZ      · · 
BZ ·       
BZ       · 
BZ  ·  · ·   
BZ ·       

WFG   ·     
WFG   ·     
WFG   ·     
WFG   ·     
WFG   ·     
WFG    · · · · ·
WFG  ·  · ·   ·
WFG    · ·  · 
WFG   ·     

Bridge     ·    
Bridge     · ·   
Bridge      ·   
Bridge     · ·   
Bridge      ·   

Total        

a detailed description of the significance ranking. The performance P is
calculated for all algorithms, on all test problems of a given suite.

In addition to the significance rank at the respective level η, the mean rank
of an algorithm when ranking all algorithms together is reported as well.
The reason for plotting the mean rank instead of the significance is to also
get an idea of the effect size of the differences—due to the large number of
runs (), differences might show up as significant although the difference
is only marginal. The mean rank is reported not only for the optimized
level η, but a continuous range of other robustness levels as well to get an
idea of the robustness distribution of the different algorithms.
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Figure . Pareto front approximations on the bridge problem for different algorithms. Since
the first objective of the bridge problem, the structural efficiency, has to be maximized, the
x-axis is reversed such that the figure agrees with the minimization problem. The robustness
of a solution is color coded, lighter shades of gray stand for more robust solution. The dotted
line represents the Pareto front of robust solutions (for (a), no robust solutions exists).

.. ·Results

Visual Comparison of Pareto fronts
As the Pareto-set approximations in Figure . show, a comparison of
the different approaches is difficult: depending on how robustness is con-
sidered, the solutions exhibit different qualities in terms of objective val-
ues and robustness. It is up to decision maker to chose the appropriate
method for the desired degree of robustness. The existing three approaches
thereby constitute rather extreme characteristics. As the name implies, the
HypEno. rob. approach only finds non-robust solutions, but in exchange con-
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Figure . Average Kruskal-
Wallis ranks over all WFG test
problems at the robustness level
η = . for different number of
objectives.

.3

.4

.5

.6

2 3 4 5 7 10 15 30 5020

constraint HypE.1f

additional
objective

no robustness

reserve

HypE.001a

m
ea

n 
ra

nk
 (b

et
te

r→
)

nr. of objectives

.2

quality. Figure . shows the influence of different θ on the robustness
and quality of the found solutions on BZ. For this test problem, the ro-
bustness of solutions increases with distance to the (linear) Pareto front,
see Appendix E.. Only when choosing θ < 0.1, solutions robust at the
constraint level are obtained. In the following a version with θ fixed to 0.1

is used (referred to as HypE.f), and a version with θ decreasing to 0.001

(referred to as HypE.a).

Performance Score over all Testproblems
To obtain a more reliable view of the potential of the different algorithms,
the comparison is extended to all test problems. To this end, the per-
formance score P (Ai) of an algorithm i is calculated as outlined in Sec-
tion ... Table . shows the performance on the six BZ, the nine WFG,
and five instances of the bridge problem. Overall, HypE.a reaches the best
performance, followed by HypE.f, Algclasses, and Algrsv. All four algorithms
show a better performance than Algcon.

Hence, not only are two modifications of the constraint approach (Algclasses,
Algrsv) able to outperform the existing constraint approach, but the robust-
ness integrating hypervolume indicator as well is overall significantly better
than Algcon.
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than three objectives. Figure . shows the mean Kruskal-Wallis rank for
a selected subset of algorithms at different number of objectives. The algo-
rithm HypE.a shows the best performance except for  objectives, where
the mean rank of the Algrsv approach is larger (although not significantly).
Except for  and  objectives, HypE.a is significantly better than Algcon.
On the other hand, HypE.f performs worse than the constraint approach
for all considered number of objectives except the biobjective case. This
might indicate, that the parameter θ in Eq. . needs to be decreased with
the number of objectives, because the trade-off between objective values and
robustness is shifted towards objective value in higher dimensions. However,
further investigations need to be carried out to show the influence of θ when
increasing the number of objectives.

Performance over Different Robustness Levels
In the previous comparisons, solutions robust at the predefined level have
been considered. Next, the influence of loosening or tightening up this
constraint is investigated. Figure . illustrates the mean hypervolume
rank, normalized such that 0 corresponds to the worst, and 1 to the best
quality. The mean ranks are shown for different levels of robustness ρ,
normalized such that the center corresponds to the level optimized. For
levels of robustness stricter than η, Algclasses reaches the best hypervolume
values. Around η, HypE.a performs best and further decreasing the ro-
bustness level, HypE.f overtakes. Further decreasing the robustness, Algao,
and finally HypEno. rob. are the best choices.

Optimizing Multiple Robustness Classes
Although Algclasses proved useful even when only one of its optimized classes
are considered afterwards, the main strength of this approach shows when
actually rating the hypervolume of the different classes optimized. Table .
lists the performance scores for the different classes averaged over all test
problems of BZ, WFG, and truss bridge. Using Algind. runs is significantly
worse than the remaining approaches considered. This indicates, that op-
timizing multiple robustness levels concurrently is beneficial regardless of
the robustness integration method used. Overall, Algclasses reaches the best
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Table . Comparison of the algo-
rithms: Algind. runs , Algao , HypEno. rob. ,
and Algclasses. For each optimized
class the sum of the performance
score is reported for each of the
three considered problem suites BZ,
WFG, and the bridge problem.

Algind. runs Algao HypEno. rob. Algclasses

.
BZ    
Bridge    

. WFG    

.
BZ    
Bridge    

. WFG    

.
BZ    
Bridge    

. WFG    

.
BZ    
Bridge    

. WFG    

∞
BZ    
Bridge    
WFG    

Total    

total performance (), the algorithms scores best on all classes except the
one without robustness (η =∞), where HypEno. rob. outperforms the other
algorithms.

Application to Real World Truss Bridge Problem
In conclusion of this experimental study, the algorithms from Section .
are compared on the truss bridge problem in more detail. First, Figure .
shows the distribution of hypervolume at the optimized robustness level
η = 0.02. In contrast to Section ., the hypervolume is not normalized
and larger values correspond to better algorithms.

The two HypE variants HypE.a, and HypE.f reach the largest hyper-
volume of 3.37 and 3.28 respectively, the difference not being statistically
significant. Both algorithms are significantly better than the Algclasses algo-
rithm, which in turns is better than Algao, and Algrsv. Algcon and Algsim. ann.
follow on the last place, only HypEno. rob. reaches a lower hypervolume value
by only finding non-robust solutions.
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Figure . Comparison of algo-
rithms on the truss bridge prob-
lem. Larger hypervolume values
indicate better Pareto set approxi-
mations. The HypEno. rob. approach
reached only unstable bridges, and
therefore has obtained a zero hyp-
ervolume. Algorithms separated
by an arrow are statistically signif-
icant, e.g., Algao and Algsim. ann..
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When relaxing the robustness constraint by 10% to η = 0.022, the lead of
the HypEθ algorithms over Algcon even increases: the latter finds no so-
lutions exceeding the constraint, and, consequently, the hypervolume does
not further increase. The HypE approaches, on the other hand, trade-off ro-
bustness and objective values to a certain extend, such that some solutions
slightly exceed the robustness constraint. When relaxing the robustness
constraint, these solutions start contributing to the hypervolume: the hyp-
ervolume of HypE.f increases by .%. Because of using a very strict final
constraint level, the hypervolume of HypE.a barely increases (.%).
Algao profits the most (+%) since the algorithm does not optimize specific
to the constraint.

All undominated stable solutions were found by one of the two HypE algo-
rithms (not shown). As far as the best unstable bridges are concerned, most
undominated solutions were found by the HypEno. rob. algorithm. However,
Algrsv and Algao also found Pareto-optimal unstable bridges, e.g., the three
cases presented in the following.

Figure . shows the stable and unstable bridge with the largest structural
efficiency. Both solutions are half-through arch bridges crossing the decks
with vertical arch ribs, resembling a Marsh arch bridge []. The unstable
bridge uses two chords: the first supports the three joints at the center
of the bridge, the second supports the next two joints. The joints closest
considering all solutions of all algorithms and runs combined.
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(a) unstable, f =. N/kg, f = .m, r = .

(b) stable, f = . N/kg, f = .m, r = .

Figure . Best stable and unstable bridge with large height, the unstable was found by
Algao , the stable by HypE.a.

to the banks are supported from below. The robust bridge is also a half-
through arch bridge, however, uses a different design: first off, all members
are thinner, which make them less susceptible to noise, see Eq. E.. Sec-
ondly, the bridge uses a third arch, spanning from the additional nodes.
Finally, instead of supporting the decks with only one hanger as for the
non-robust solution, two diagonal hangers connect the center decks. These
modifications make the bridge ten times more robust than the unstable one,
but also decrease the structural efficiency from .N/kg to .N/kg.

In Figure ., a stable and an unstable bridge are shown with medium rise.
As for the bridges in Figure ., robustness is achieved by decreasing the
cross-sectional area of the members, by adding an additional half-through
arch, and by rearranging the ribs.

Finally, Figure . compares the best stable and unstable bridge with min-
imum rise, i.e., zero height over the middle of the bridge. Both design
vary a lot form the half-through bridges shown before. The unstable design
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(a) unstable, f = . N/kg, f = .m, r = .

(b) stable f = . N/kg, f=.m, r = .

Figure . Best stable and unstable bridge with medium height, the unstable was found by
Algrsv , the stable by HypE.a.

(a) unstable, f = . N/kg, f = m, r = .

(b) stable, f = . N/kg, f = m, r= .

Figure . Best stable and unstable bridge with medium height, the unstable was found by
Algrsv , the stable by HypE.a.

resembles a suspension bridge with pylons at the edge of the abutments.
However, the pylons consist of many members that give the suspension
cable an arch like shape. An inverted arch supports the two centermost
decks, which nicely fits the rest of the structure and gives the bridge not
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only the largest structural efficiency among all solutions found, but also an
aesthetically appealing look.

The robust counterpart also relies on a structure similar to a suspension
bridge, but has a less smooth look than the unstable bridge. All members
are thinner. In addition to the suspension, the bridge uses a deck truss to
support joints from below the roadbed.

. · Summary

This chapter has shown different ways of translating existing robustness con-
cepts to hypervolume-based search, including the traditional approaches: (i)
modification of objective values, (ii) considering robustness as an additional
objective, and (iii) as an additional constraint. For the latter, three mod-
ifications are suggested to overcome premature convergence. Secondly, an
extended definition of the hypervolume indicator has been proposed that
allows to realize the three approaches, but can also be adjusted to more
general cases, thereby flexibly adjusting the trade-off between robustness
and objective values while still being able to focus on a particular robust-
ness level. To make this new indicator applicable to problems involving a
large number of objectives, an extension of HypE (Hypervolume Estimation
Algorithm for Multiobjective Optimization) has been presented.

An extensive comparison has been made on WFG test problems, a novel
test problem suite that tests different aspects of robustness, and a new real
world bridge problem that provides an intuitive way to assess visually the
quality and robustness of solutions. As statistical tests and visual results
revealed, the novel hypervolume indicator not only offers more flexibility
than traditional approaches, but also outperforms the plain constraint ap-
proach. A visual comparisons of the structural properties of the solutions on
the bridge problem showed the potential of the proposed approaches even
on highly demanding types of problems.
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Furthermore, a new algorithm has been proposed to optimize multiple con-
straints at the same time. In experiments, this approach proved to be
beneficial in comparison to doing independent runs.






Conclusions

Optimization problems involving many—often conflicting—objectives arise
naturally in many practical applications. Multiobjective Evolutionary Algo-
rithms (MOEAs) are one class of search techniques, that has been success-
fully applied to these types of problems. They aim at approximating the
set of Pareto-optimal trade-off solutions, which helps the decision maker in
selecting good compromise solution(s), but also to better understand the
problem structure.

In recent years, MOEAs based on the Hypervolume Indicator (HI) have
become increasingly popular. The hypervolume indicator combines two
preferable properties: (i) it transform the multiobjective problem into a
single-objective one while taking Pareto dominance into account, (ii) the
indicator can express arbitrary user preference.

The aim of the present thesis was to (a) investigate the properties of the
HI, (b) generalize its definition to also be able to consider robustness issues,
and (c) to widen its application area to problems with large numbers of
objectives by proposing a new algorithms.
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. · Key Results

In detail, the four major contributions outlined in the following have been
made—concerning not only the HI, but also other problems in its context.

.. ·The Hypervolume Indicator as Set Preference Relation

The present thesis has shown that most existing MOEAs can be considered
as hill climbers on set problems, implicitly based on preference relations on
sets. In this context, the thesis investigated how set preference can be for-
malized on the basis of quality indicators, and illustrated the importance of
generating relations that refine Pareto dominance. A general procedure has
been proposed to construct preference relations that fulfill this requirement.
Considering the properties of set preference relations has thereby reinforced
the usefulness of the HI, as it can be used to refine other indicator-based
preference relations.

Moreover, a general algorithm framework has been presented to optimize set
preference relations, which separates algorithm design from the articulation
of preference relations, thereby providing a great deal of flexibility. This
framework has been extended allowing to optimize multiple sets concur-
rently, showing benefits in terms of the obtained Pareto set approximations
but also in terms of simplifying parallelization of the method thus leading
to a reduced computation time. A statistical comparison methodology has
been proposed that simplifies the performance assessment of algorithms with
respect to the underlying preference relation.

.. ·Characterizing the Set Maximizing the Hypervolume

In the light of the growing proliferation of algorithms relying on the HI, it
is important to know the bias of the indicator. This thesis has provided
rigorous results on the question, how Pareto-optimal solutions to biobjec-
tive problems are distributed when maximizing the HI. In particular, the
influence of (i) the reference point, (ii) the shape of the Pareto front, and
(iii) the weight function of the HI has been investigated. The result made
evident that the HI is insensitive to the way the front is bent (convex or
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concave), and that the distribution of solutions only depends on the slope
of the front which contradicts previous assumptions. Furthermore, it has
been shown that for some front shapes, the extremes are never contained in
optimal distributions of solutions, regardless of the choice of the reference
point. For the remaining cases, lower bounds for the reference point have
been given that guarantee the existence of extremal solutions in optimal
distributions.

.. ·Considering Robustness Within Hypervolume-Based Search

While this thesis relied on the existing concept of the weighted HI to ex-
press user preference, no method existed so far to consider robustness issues
within hypervolume-based search. To this end, an extension of the HI has
been proposed. This generalized hypervolume indicator thereby allows to
trade-off flexibly the quality of solutions in terms of objective values with
their robustness, enabling to consider robustness in many ways. As has
been demonstrated, the generalized HI also allows to realize three prevalent
existing approaches within hypervolume-based algorithms.

.. · Fast Algorithms using the Hypervolume Indicator

To employ the beneficial properties of the hypervolume, this thesis has pro-
posed the Hypervolume Estimation Algorithm for Multiobjective Optimiza-
tion (HypE)—a fast algorithm relying on sampling. This algorithm enables
to apply the HI to problems involving large number of objectives, where
so far the high computational effort for calculating the hypervolume has
prevented the application of the indicator. Furthermore, special attention
has been given on how to use the weighted hypervolume indicator in the
context of HypE—enabling to incorporate user preference—, and how to use
the generalized definition of the HI—enabling to consider the robustness of
solutions. Extensive comparisons in the corresponding setting have shown
the potential of this novel algorithm.
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. · Discussion

The author hopes that the present thesis enhances knowledge of the hyp-
ervolume indicator and widens its field of application, thereby contributing
to the increasing propagation of the indicator. Most results in this thesis
have two aspects: on the one hand, they increase the theoretical knowledge
of the indicator or add a new feature, on the other hand they have practical
implications.

The new set-based view on MOEAs has investigated theoretically set pref-
erence relations, stressing the importance of preference relations being a
refinement of Pareto-dominance—which is fulfilled by the Hypervolume In-
dicator (HI). Being the only indicator known so far, fulfilling the refinement
property, gives one reason for the increasing popularity of the indicator.
On the other hand, extensive comparisons of MOEAs have shown, that the
refinement property of the HI is not only of theoretical interest, but also
leads to better Pareto-set approximations on many-objective problems than
approaches like NSGA-II or SPEA not having the refinement property.
Thereby, the proposed algorithm SPAM+, operating on multiple sets of
solutions at the same time, might form the basis of other algorithms that
pick up the novel set-based perspective.

The benefits of characterizing the optimal set in terms of a density is twofold:
first off, it disproved many prevailing beliefs on the HI by describing the bias
of the indicator in a concise way hardly to be surpassed by the knowledge
of any other MOEA. This knowledge helps to predict the outcome of al-
gorithms. Secondly, the characterization provides a way of translating user
preference to a corresponding weighted HI, where arbitrary user preference
can be realized in a very concise manner. This might help to develop new
preference based algorithms that are both very flexible in terms of the ex-
pressed preference, and at the same time very precise.

Proposing a generalized definition of the HI enables the incorporation of the
robustness of solutions into the hypervolume in many ways, including three
existing possibilities. Moreover, the generalized definition has the potential
to open new ways to also incorporate other properties of solutions into
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hypervolume-based search—an ongoing study by the author and colleagues
for instances addresses the consideration of diversity by the generalized HI.

Complementary to the extended definition of the HI and the theoretical
investigation of its property, the proposal of HypE widens the area of appli-
cation of the hypervolume to problems involving a large number of objec-
tives. In the light of the desirable properties of the HI, this new algorithm
might help to solve many problems not tackled so far. Hopefully, HypE also
forms the basis of development of advanced algorithms addressing preference
articulation, robustness consideration or other issues yet to be translated to
the HI.

. · Future Perspectives

With respect to the Hypervolume Indicator (HI), still many questions re-
main open. Some of these question are already subject to ongoing research.

• Probably the most eminent feature of the hypervolume is its property
of refining Pareto dominance. Hence, the question arises whether other
indicators exist (not based on the hypervolume) that share this prop-
erty. Such an indicator would be particularly attractive for search, if the
indicator were easily calculable even for high dimensional spaces, such
that no approximation schemes are necessary as for the HI. Although no
proof exists showing that the HI is unique with respect to the refinement
property, the author disbeliefs that another such indicator exists, let
alone an indicator fast computable and still being as versatile as the HI.

• Seeing the advantages of the hypervolume, an interesting research ques-
tion is whether other existing approaches—especially in the field of pref-
erence articulation—can be expressed by the HI.

• The theoretical results provided with the density hold for biobjective
problems only. A conjecture has been stated in this thesis concerning
the density for arbitrary number of objectives. However, no proof of
the formula has been given. Especially, knowing the influence of the
weight function on the density of points is of importance, as this helps
expressing user preference by a weighted HI.
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• Although the new advanced fitness scheme employed by HypE facili-
tates approximating the hypervolume, the employed sampling strategy
is very basic, as it does not include advanced techniques, e.g., sampling
according to Latin Hypercubes, nor does the method use adaptive sam-
pling—although a preliminary procedure has been investigated by the
author and colleagues in [].



Appendix

A · Statistical Comparison of Algorithms

Throughout the present thesis, the following procedure is mostly used to compare dif-
ferent Multiobjective Evolutionary Algorithms (MOEAs). Let Ai with 1 ≤ i ≤ l

denote the l algorithms to be compared. For each algorithm Ai, the same number r of
independent runs is carried out for gmax generations.

A. ·Step : Determining the Hypervolume of All Pareto-Set Approximations

The quality of Pareto-set approximations is assessed using the hypervolume indicator,
where for less than 6 objectives the indicator values are calculated exactly and otherwise
approximated by Monte Carlo sampling in the following manner: let A denote the set
of solutions whose hypervolume needs to be approximated, and let IH(A, R) denote the
hypervolume of A with respect to the reference set R. Then

. first an axis-aligned hyperrectangle Sr is defined containing the objective vectors of
all algorithms, as well as all reference points r ∈ R, see Section .. on page .

. Thereafter, m samples si, i ≤ 1 ≤ m, are randomly uniformly generated within the
hyperrectangle si ∈ Sr. For each sample, it is determined whether it is dominated
by the set of solutions under consideration, i.e., whether f(A) 6 si holds.

. Given the ratio of dominated to undominated samples, an approximation of the
hypervolume indicator ÎH(A, R) then is given by:

ÎH(A, R) =
|{t ∈ {s1, . . . , sm} | f(A) 6 t}|

m
λ(Sr)

where λ(Sr) denotes the Lebesgue measure or hypervolume of Sr.

When sampling is used, uncertainty of measurement is introduced which can be ex-
pressed by the standard deviation of the sampled value, which is σÎ = λ(Sr)

√
p(1− p)/m,

where p denotes the hit probability of the sampling process, i.e., the ratio of dominate
samples to the total number of samples used. Unless noted otherwise,   sam-
ples are used per Pareto-set approximation. For a typical hit probability between %
to % observed in praxis, this leads to a very small uncertainty below 10−3 times
IH(A, R). Hence, it is highly unlikely that the uncertainty will influence the statistical
test applyied to the hypervolume estimates, and if it does nonetheless, the statistical
tests are over-conservative []. Therefore, uncertainty is not considered in the following
test.
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A. ·Step : Determining Statistically Significant Differences

For formal reason, the null hypothesis that all algorithms are equally well suited to
approximate the Pareto-optimal set is investigated first, using the Kruskal-Wallis test
at a significance level of α. Let hi,j denote the calculated or approximated hypervolume
of the Pareto set approximation of algorithm Ai in run j. Let N := l ·r denote the total
number of runs. Then, all hypervolume values are rank-ordered, where R(hi,j) denotes
the rank of value hi,j starting with 1 representing the largest value to N representing
the worst hypervolume. If several hypervolume results are equal to each other, the
mean rank is assigned to all of them. For each algorithm Ai, the rank sum is then
calculated Ri =

∑r
k=1 R(hi,k), 1 ≤ i ≤ l.

Given the mean ranks Ri, the test statistic T is

T =
1

S2

((
1

r

l∑
i=1

R2
i

)
− N(N + 1)2

4

)
with

S2 =
1

N − 1

((
l∑

i=1

r∑
j=1

R(hi,j)
2

)
− N(N + 1)2

4

)
As an approximation for the null distribution of T , the chi-squared distribution with
l − 1 degrees of freedom is used; if T is greater than the 1 − α quantile from the
χ2

l−1-distribution, the hypothesis is accepted at the level α, that at least on of the l

algorithms yields larger hypervolume values than at least one other algorithm.

When comparing algorithms, to show the sole presence of a difference is insuffient.
Rather one wants to know, which one of two algorithms Ai and Aj is better. To this
end, for all pairs of algorithms the difference in median of the hypervolume values is
compared by the Conover-Inman post-hoc procedure [], using the same confidence
level α as for the Kruskal-Wallis test. This test states, that the difference in hypervol-
ume of two algorithms Ai and Aj is statistically significant, if∣∣∣∣Ri −Rj

r

∣∣∣∣ > t1−(α/2)

√(
S2

N − 1− T

N − l

)
2

r
(A.)

holds, where t1−α/2 is the (1−α/2) quantile of the t distribution with N − l degrees of
freedom.
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A. ·Step : Calculating the Performance Score

Let δi,j be 1, if Ai turns out to be significantly better than Aj according to Eq. A.,
and 0 otherwise. Based on δi,j , for each algorithm Ai the performance index P (Ai) is
determined as follows:

P (Ai) =

l∑
j=1
j ̸=i

δi,j

Hence, the value P (Ai) reveals, how many other algorithms are significantly better
than Ai on the specific test case. The smaller the index, the better the algorithm; an
index of zero means that no other algorithm generated significantly better Pareto-set
approximations in terms of the hypervolume indicator, while the worst performance of
l − 1 indicates, that all other algorithms are significantly better.

B · Complementary Proofs to Section 

B. ·Proof of Theorem . on page 

In order to prove Theorem . on page  first a set of smaller results has to be stated:

Lemma B.: If all preference relations 4j , 1 ≤ j ≤ k in Definition . are preorders,
then 4S is a preorder.

Proof. Reflexivity: As A 4i A holds for all 1 ≤ i ≤ k (since all 4i are preorders), it
follows i = k in Definition . (i). Therefore, (A 4S A)⇔ (A 4i A) and the reflexivity
holds. Transitivity is proven by induction. First, it needs to be shown that transitivity
holds for k = 1. In this case, one has A 4S B ⇔ A 41 B as i = k in Definition . (i).
Transitivity holds as 41 is a preorder. Now one has to show that transitivity holds for
k if it holds for k − 1. Let us define the sequence of length k − 1 as S′. Then one can
reformulate Definition . as follows:

(A 4S B)⇔ ((A ≡S’ B) ∧ (A 4k B)) ∨ (A ≺S’ B) (B.)
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Now, one can show that transitivity holds:
(A 4S B) ∧ (B 4S C)⇒

⇒[((A ≡S’ B) ∧ (A 4k B)) ∨ (A ≺S’ B)]∧
[((B ≡S’ C) ∧ (B 4k C)) ∨ (B ≺S’ C)]⇒

⇒((A ≡S’ B) ∧ (B ≡S’ C) ∧ (A 4k B) ∧ (4k C))∨
((A ≺S’ B) ∧ (B ≺S’ C))⇒

⇒((A ≡S’ C) ∧ (A 4k C)) ∨ (A ≺S’ C)⇒ A 4S C

Lemma B.: If all preference relations 4j , 1 ≤ j ≤ k in Definition . are total
preorders, then 4S is a total preorder.

Proof. A preorder 4 is called total if (A 4 B)∨ (B 4 A) holds for all A, B ∈ Ψ. Using
the same induction principle as in the proof of B. one can notice that for k = 1 one
has (A 4S B) ⇔ (A 41 B) and therefore, 4S is total. For the induction it is known
that Eq. B. holds. Therefore, it follows

(A 4SB) ∨ (B 4S A)⇔
⇔((A ≡S’ B) ∧ (A 4k B)) ∨ ((B ≡S’ A) ∧ (B 4k A))∨

(A ≺S’ B) ∨ (B ≺S’ A)⇔
⇔(A ≡S’ B) ∨ (A ≺S’ B) ∨ (B ≺S’ A)⇔ true

Lemma B.: If 4k in Definition . is a refinement of a given preference relation 4
and all relations 4j , 1 ≤ j < k are weak refinements of 4, then 4S is a refinement
of 4.

Proof. Let us suppose that A ≺ B holds for some A, B ∈ Ψ. It needs to be shown
that A ≺S’ B holds. At first note, the A 4j B holds for all 1 ≤ j < k as 4j are weak
refinements and A ≺k B holds as 4k is a refinement. Let us now consider the sequence
S′ of length k − 1. Because all 4j are weak refinements, either A ≡j B or A ≺j B

holds. Taking into account the construction of S′ according to Definition . one can
easily see that A 4S’ B holds. Based on the fact that 4S’ is a weak refinement it will
be shown that A ≺S B holds, i.e. ≺S is a refinement. To this end, again Eq. B. is
used to derive

(A 4S B) ∧ (B ̸4S A)⇔ (B.)
⇔[((A ≡S’ B) ∧ (A 4k B)) ∨ (A ≺S’ B)]∧

((B ̸≡S’ A) ∨ (B ̸4k A)) ∧ (A ̸≺S’ B)
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As 4S’ is a weak refinement, two cases need to be considered. If A ≡S’ B holds,
then A ̸≺S’ B holds as well as B ̸≺S’ A. In this case, the expression becomes (A 4k

B) ∧ (B ̸4k A) which yields true. If A ≺S’ B holds, then A ̸≡S’ B, B ̸≡S’ A and
B ̸≺S’ A hold. The expression above becomes now (A ≺S’ B) ∧ (B ̸≺S’ A) which also
yields true.

Now the proof of Theorem . can be given.

Proof. Because of Lemma B., it is known that the sequence S′ = (41,42, . . . ,4k′
)

leads to a refinement of 4. One just needs to show that additional preference relations
4j , k′ < j ≤ k in the sequence do not destroy this property. Again the same induction
principle is used as in the previous proofs. Let us suppose that S′ yields a refinement
(as shown above) and S has one additional relation 4k′+1, i.e. k = k′ +1. Using again
Eq. B. one can derive the expression for A ≺S B as in Eq. B.. Supposing that A ≺ B

holds in the given preorder, and 4S’ is a refinement, the relations A ̸≡S’ B, B ̸≡S’ A,
A ≺S’ A and B ̸≺S’ A hold. For the expression in Eq. B. it follows (A 4k B)∧(B ̸4k A)

which yields true.

B. ·Proof of Theorem . on Page 

Proof. Suppose conditions  and  hold, and let A, B ∈ Ψ be two arbitrary sets with
A ≺ B, i.e. (A 4 B)∧(B ̸4 A). For the proof, the two local transformations are applied
in order to gradually change B to A and show that at each step the indicator value
does not decrease and there is at least one step where it increases. First, the elements
of B are successively added to A; since for each b ∈ B it holds A 4 {b}, according to
condition  the indicator value remains constant after each step, i.e., I(A) = I(A ∪B).
Now, the elements of A are successively added to B; since A ≺ B, there exists an
element a ∈ A such that B ̸4 {a} according to the conformance of 4 with ≼. That
means when adding the elements of A to B the indicator value either remains unchanged
(condition ) or increases (and it will increase at least once, namely for a, according to
condition ), and therefore I(A ∪B) > I(B). Combining the two intermediate results,
one obtains I(A) = I(A ∪ B) > I(B) which implies A 4I B and B ̸4I A. Hence, 4I
refines 4. For weak refinement, the proof is analogous.

To the prove that the second condition is a necessary condition, suppose A ̸4 {b}.
According to Definition ., (A ∪ {b}) ≺ A which implies that (A ∪ {b}) 4I A (weak
refinement) respectively (A∪{b}) ≺I A (refinement). Hence, I(A∪{b}) ≥ I(A) respec-
tively I(A ∪ {b}) > I(A) according to Eq. ..
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C · Complementary Material to Chapter 

C. ·Proof of Theorem . stated on page 

Before to prove the result, Eq. . (page ) is rewritten in the following way

Iw
H(u1, . . . , uµ) =

µ∑
i=1

g(ui, ui+1) , (C.)

where g is the -dimensional function defined as

g(α, β) =

∫ β

α

∫ g(u0)

g(α)

w(u, v)dv du . (C.)

The derivation of the gradient of Iw
H thus relies on computing the partial derivatives of

g. The following lemma gives the expressions of the partial derivative of g:

Lemma C.: Let w be a weight function for the weighted hypervolume indicator Iw
H and g :

[umin, umax]→ R be a continuous and differentiable function describing a -dimensional
Pareto front. Let h be defined as

h(α, β) :=

∫ β

α

∫ g(u0)

g(α)

w(u, v)dvdu

where g(u0) = r2. Then,

∂1h(α, β) = −g′(α)

∫ β

α

w(u, g(α))du−
∫ g(u0)

g(α)

w(α, v)dv (C.)

∂2h(α, β) =

∫ g(u0)

g(α)

w(β, v)dv

Proof. To compute the first partial derivative of h, the derivative of the function h1 :

α→ h(α, β) has to be computed. Let us define

γ(l, m) :=

∫ g(u0)

g(m)

w(l, v)dv

such that

h1(α) :=

∫ β

α

γ(u, α)du .

Define

K(ū, v̄) =

∫ β

ū

γ(u, v̄)du

and be Φ : α ∈ R→ (α, α) ∈ R2. Then h1(α) = K ◦ Φ(α) such that the chain rule can
be applied to find the derivative of h1. Hence, for any q ∈ R it holds

h′
1(α)q = DΦ(α)K ◦DαΦ(q) (C.)
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where DαΦ (resp. DΦ(α)K) are the differential of Φ (resp. K) in α (resp. Φ(α)).
Therefore, the differentials of Φ and K need to be calculated. Since Φ is linear, DαΦ = Φ

and thus
DαΦ(q) = (q, q) . (C.)

Moreover, the differential of K can be expressed with the partial derivatives of K,
i.e., D(ū,v̄)K(q1, q2) = (∇K) · (q1, q2) where ∇ is the vector differential operator ∇ =(

∂
∂u1

, . . . , ∂
∂un

)
= (∂1, . . . , ∂n) and (q1, q2) ∈ R2. Hence,

D(ū,v̄)K(q1, q2) = ∂1K(ū, v̄) q1 + ∂2K(ū, v̄) q2.

Thus, the partial derivatives of K is needed. From the fundamental theorem of calculus,
∂1K(ū, v̄) = −γ(ū, v̄). Besides, ∂2K(ū, v̄) =

∫ β

ū
∂2γ(u, v̄)du and therefore

D(ū,v̄)K(q1, q2) = −γ(ū, v̄)q1 +

(∫ β

ū

∂2γ(u, v̄)du

)
q2.

Applying again the fundamental theorem of calculus to compute the second partial
derivative of γ, one finds that

∂2γ(u, v̄) = −g′(v̄)w(u, g(v̄))

and thus

D(ū,v̄)K(q1, q2) =

(
−
∫ g(u0)

g(v̄)

w(ū, v)dv

)
q1 +

(∫ β

ū

−g′(v̄)w(u, g(v̄))du

)
q2. (C.)

Combining Eq. C. and Eq. C. in Eq. C. one obtains

∂1h(α, β) = h′
1(α) = −g′(α)

∫ β

α

w(u, g(α))du−
∫ g(u0)

g(α)

w(α, v)dv

which gives Eq. C..

To compute the second partial derivative of h, one needs to compute, for any α, the
derivative of the function h2 : β → h(α, β). The function h2 can be rewritten as
h2 : β →

∫ β

α
θ(u)du where

θ(u) :=

∫ g(u0)

g(α)

w(u, v)dv .

Therefore, from the fundamental theorem of calculus it follows that ∂2h(α, β) = h′
2(β) =

θ(β) and thus

∂2h(α, β) =

∫ g(u0)

g(α)

w(β, v)dv .
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Now Theorem . can be proven

Proof. From the first order necessary optimality conditions follows that if (υµ
1 , . . . , υµ

µ)

maximizes Eq. ., then either υµ
i belongs to ]umin, umax[ and the i-th partial derivative

of Iw
H(υµ

1 , . . . , υµ
µ) equals zero in υµ

i , or υµ
i belongs to the boundary of [umin, umax], i.e.,

υµ
i = umin or υµ

i = umax. Therefore, the partial derivatives of Iw
H needs to be computed.

From Eq. C. follows: ∂1Iw
H(υµ

1 , . . . , υµ
µ) = ∂1h(υµ

1 , υµ
2 ), and from Lemma C. therefore

follows:

∂1Iw
H(υµ

1 , . . . , υµ
µ) = −g′(υµ

1 )

∫ υµ
2

υµ
1

w(u, g(υµ
1 ))du−

∫ g(υµ
0
)

g(υµ
1
)

w(υµ
1 , v)dv

and thus if υµ
1 ̸= umin and υµ

1 ̸= umax, by setting the previous equation to zero, one
obtains the condition

−g′(υµ
1 )

∫ υµ
2

υµ
1

w(u, g(υµ
1 )du =

∫ g(υµ
0
)

g(υµ
1
)

w(υµ
1 , v)dv .

For 2 ≤ i ≤ µ, ∂iI
w
H(υµ

1 , . . . , υµ
µ) = ∂2h(υµ

i−1, υµ
i ) + ∂1h(υµ

i , υµ
i+1). Using Lemma C.

one obtains

∂iI
w
H(υµ

1 , . . . , υµ
µ) =

∫ g(υµ
0
)

g(υµ
i−1

)

w(υµ
i , v)dv − g′(υµ

i )

∫ υµ
i+1

υµ
i

w(u, g(υµ
i ))du

−
∫ g(υµ

0
)

g(υµ
i
)

w(υµ
i , v)dv .

Gathering the first and last term of the right hand side, one obtains

∂iI
w
H(υµ

1 , . . . , υµ
µ) =

∫ g(υµ
i
)

g(υµ
i−1

)

w(υµ
i , v)dv − g′(υµ

i )

∫ υµ
i+1

υµ
i

w(u, g(υµ
i ))du (C.)

and thus if υµ
i+1 ̸= umin and υµ

i+1 ̸= umax, by setting the previous equation to zero, one
obtains∫ g(υµ

i
)

g(υµ
i−1

)

w(υµ
i , v)dv = g′(υµ

i )

∫ υµ
i+1

υµ
i

w(u, g(υµ
i ))du .

C. ·Proof of Lemma . stated on page 

Proof. Let us first note that the Cauchy-Schwarz inequality implies that
umax∫
0

|g′(u)w
(
u, g(u)

)
|

|δ(u)|
du ≤

√∫ umax

0

(
g′(u)w(u, g(u))

)2
du

∫ umax

0

(1/δ(u))2du (C.)

and since u → g′(u)w(u, g(u)) ∈ L2(0, umax) and 1
δ ∈ L2(0, umax), the right-hand side

of Eq. C. is finite and Eq. . is well-defined. The proof is divided into two steps.
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First, Eµ is rewritten and, in a second step, the limit result is derived by using this
new characterization of Eµ.

Step : In a first step it is proven that Eµ defined in Eq. . satisfies

Eµ = µ
µ∑

i=0

(
− 1

2g′(υµ
i )w(υµ

i , g(υµ
i ))(υ

µ
i+1 − υµ

i )
2 + O

(
(υµ

i+1 − υµ
i )

3
))

(C.)

To this end, the front is elongated to the right such that g equals g(umax) = 0 for
u ∈ [umax, υµ

µ+1]. Like that,∫ umax

0

∫ g(u)

0

w(u, v)dvdu =

µ∑
i=0

∫ υµ
i+1

υµ
i

∫ g(u)

0

w(u, v) dv du , (C.)

while using the fact that
∫ υµ

µ+1

umax

∫ g(u)

0
w(u, v) dv du = 0. Using the right hand side of

Eq. C. in Eq. ., one finds that

Eµ = µ

[
µ∑

i=0

∫ υµ
i+1

υµ
i

(∫ g(υµ
i
)

0

w(u, v) dv

)
du−

µ∑
i=0

∫ υµ
i+1

υµ
i

(∫ g(u)

0

w(u, v) dv

)
du

]
and thus

Eµ = µ

µ∑
i=0

∫ υµ
i+1

υµ
i

∫ g(υµ
i
)

g(u)

w(u, v) dv du . (C.)

At the first order, it follows∫ g(υµ
i
)

g(u)

w(u, v)dv = w(υµ
i , g(υµ

i ))(g(υ
µ
i )− g(u)) + O((u− υµ

i )) . (C.)

Since g is differentiable, a Taylor approximation of g can be applied in each interval
[υµ

i , υµ
i+1] which gives g(u) = g(υµ

i )+ g′(υµ
i )(u− υµ

i )+O((u− υµ
i )

2), which thus implies
that

g(υµ
i )− g(u) = −g′(υµ

i )(u− υµ
i ) + O((u− υµ

i )
2)

and thus the left hand side of Eq. C. becomes

−w(υµ
i , g(υµ

i ))g
′(υµ

i )(u− υµ
i ) + O((u− υµ

i )
2) .

By integrating the previous equation between υµ
i and υµ

i+1 one obtains∫ υµ
i+1

υµ
i

∫ g(υµ
i
)

g(u)

w(u, v) dv du = −1

2
w(υµ

i , g(υµ
i ))g

′(υµ
i )(υ

µ
i+1−υµ

i )
2+O((υµ

i+1−υµ
i )

3) .

Summing up for i = 0 to i = µ, multiplying by µ and using Eq. C., one obtains
Eq. C., which concludes Step .
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Step : Now, 1
2

∫ umax
0

g′(u)w(u,g(u))
δ(u) du is decomposed into

1

2

µ−1∑
i=0

∫ υµ
i+1

υµ
i

g′(u)w(u, g(u))

δ(u)
du +

1

2

∫ umax

υµ
µ

g′(u)w(u, g(u))

δ(u)
du .

For the sake of convenience in the notations, for the remainder of the proof, υµ
µ+1 is

redefined as umax such that the decomposition becomes
1

2

∫ umax

0

g′(u)w(u, g(u))

δ(u)
du =

1

2

µ∑
i=0

∫ υµ
i+1

υµ
i

g′(u)w(u, g(u))

δ(u)
du (C.)

For µ to ∞, the assumption µ sup((sup0≤i≤µ−1 |υ
µ
i+1 − υµ

i |), |umax − υµ
µ |) → c implies

that the distance between two consecutive points |υµ
i+1 − υµ

i | as well as |υµ
µ − umax|

converges to zero. Let u ∈ [0, umax] and let us define for a given µ, φ(µ) as the index of
the points such that υµ

φ(µ)
and υµ

φ(µ)+1
surround u, i.e., υµ

φ(µ)
≤ u < υµ

φ(µ)+1
. Because

assuming that δ is continuous, a first order approximation of δ(u) is δ(υµ
φ(µ)

), i.e.

δ(u) = δ(υµ
φ(µ)

) + O(υµ
φ(µ)+1

− υµ
φ(µ)

)

and therefore by integrating between υµ
φ(µ)

and υµ
φ(µ)+1

one obtains∫ υµ

φ(µ)+1

υµ

φ(µ)

δ(u)du = δ(υµ
φ(µ)

)(υµ
φ(µ)+1

− υµ
φ(µ)

) + O(υµ
φ(µ)+1

− υµ
φ(µ)

)2) . (C.)

Moreover by definition of the density δ, Eq. C. approximates the number of points
contained in the interval [υµ

φ(µ)
, υµ

φ(µ)+1
[ (i.e. one) normalized by µ:

µ

∫ υµ

φ(µ)+1

υµ

φ(µ)

δ(u)du = 1 + O((υµ
φ(µ)+1

− υµ
φ(µ)

)) . (C.)

Using Eq. C. and Eq. C., it follows
1

δ(υµ
φ(µ)

)
= µ(υµ

φ(µ)+1
− υµ

φ(µ)
) + O(µ(υµ

φ(µ)+1
− υµ

φ(µ)
)2) .

Therefore for every i

1

δ(υµ
i )

= µ(υµ
i+1 − υµ

i ) + O(µ(υµ
i+1 − υµ

i )
2) . (C.)

Since u→ g′(u)w(u, g(u))/δ(u) is continuous, one also obtains∫ υµ
i+1

υµ
i

g′(u)w(u, g(u))

δ(u)
du =

g′(υµ
i )w(υµ

i , g(υµ
i ))

δ(υµ
i )

(υµ
i+1 − υµ

i ) + O((υµ
i+1 − υµ

i )
2) .

Injecting Eq. C. in the previous equation, one obtains∫ uµ
i+1

uµ
i

g′(u)w(u, g(u))

δ(u)
du = µg′(υµ

i )w(υµ
i , g(υµ

i ))(υ
µ
i+1 − υµ

i )
2 + O(µ(υµ

i+1 − υµ
i )

3) .
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Multiplying by 1/2 and summing up for i from 0 to µ and using Eq. C. and Eq. C.,
one obtains

1

2

∫ umax

0

g′(u)w(u, g(u))

δ(u)
= −Eµ +

µ∑
i=0

O(µ(υµ
i+1 − υµ

i )
3) . (C.)

Let us define ∆µ as sup((sup0≤i≤µ−1 |υ
µ
i+1 − υµ

i |), |umax − υµ
µ |). By assumption, it is

known that µ∆µ converges to a positive constant c. The last term of Eq. C. satisfies∣∣∣∣∣
µ∑

i=0

O(µ(υµ
i+1 − υµ

i )
3)

∣∣∣∣∣ ≤ Kµ2(∆µ)
3

where K > 0. Since µ∆µ converges to c, (µ∆µ)
2 converges to c2. With ∆µ converging

to 0, one therefore has that µ2∆3
µ converges to 0. Taking the limit in Eq. C. one

therefore obtains

−1

2

∫ umax

0

g′(u)w(u, g(u))

δ(u)
du = lim

µ→∞
Eµ .

C. ·Proof of Theorem . on Page 

Proof. First the differential of E with respect to the density δ is computed, denoted by
DEδ(h). Let h ∈ L2(0, umax). Then,

E(δ + h) = −1

2

∫ umax

0

w(u, g(u))g′(u)

δ(u) + h(u)
du

= −1

2

∫ umax

0

w(u, g(u))g′(u)

δ(u)
(
1 +

h(u)
δ(u)

)du .

Due to the Taylor expansion of 1
1+y

y→0
= 1− y + O(y) this equals

E(δ + h) = −1

2

∫ umax

0

w(u, g(u))g′(u)

δ(u)

(
1− h(u)

δ(u)
+ O (∥h(u)∥)

)
du

= −1

2

∫ umax

0

w(u, g(u))g′(u)

δ(u)
du +

1

2

∫ umax

0

w(u, g(u))g′(u)h(u)

δ(u)2
du

− 1

2

∫ umax

0

w(u, g(u))g′(u)

δ(u)
O (∥h(u)∥) du

= E(δ) +
1

2

∫ umax

0

w(u, g(u))g′(u)h(u)

δ(u)2
du + O (∥h(u)∥) .

Since h→ 1
2

∫ umax
0

w g′h
δ2 du is linear in h, is is known from differential calculus that

DEδ(h) =
1

2

∫ umax

0

w(u, g(u))g′(u)

δ(u)2
h(u)du .
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In a similar way,

J(δ + h) =

∫ umax

0

(δ(u) + h(u)) du

=

∫ umax

0

δ(u)du +

∫ umax

0

h(u)du

= J(δ) +

∫ umax

0

h(u)du

and as h→
∫ umax
0

h(u)du is linear, the differential of J equals

DJδ(h) =

∫ umax

0

h(u)du .

From the the Lagrange multiplier theorem for Banach spaces [], it is known that
there exists a λ ∈ R such that the solution of P satisfies
∀h : DEδ(h) + λDJδ(h) = 0

that can be rewritten as

∀h :
1

2

∫ umax

0

w(u, g(u))g′(u)

δ(u)2
h(u)du + λ

∫ umax

0

h(u)du = 0

or

∀h :

∫ umax

0

(
1

2

w(u, g(u))g′(u)

δ(u)2
+ λ

)
h(u)du = 0 . (C.)

Since a solution for P has to satisfy Eq. C. for all h, it is known for the choice of
h(u) = 1

2
w(u,g(u))g′(u)

δ(u)2 + λ that∫ umax

0

(
1

2

w(u, g(u))g′(u)

δ(u)2
+ λ

)2

du = 0

holds which in turn implies that
1

2

g′

δ2
w + λ = 0

or in other words that
δ(u) =

√
−w(u, g(u))g′(u)/

√
2λ

where the constant λ is still to be determined. It is known that δ is a density and needs
therefore to satisfy that

∫ umax
0

δ(u)du = 1. Then, one can determine the missing
√
2λ

from

1 =

∫ umax

0

δ(u)du =

∫ umax

0

√
−w(u, g(u))g′(u)

√
2λ

du

=
1√
2λ

∫ umax

0

√
−w(u, g(u))g′(u)du
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of considered line segments the objective vector will be dominated, or in other words,
the probability of a given z at distance a being dominated is %.

The length of a segment can be determined by considering the extremes of the line
denoted b1, b2 with the smallest f1 and f2 value respectively. Let the line segment
be determined by the normal vector (e1, e2), i.e., (z∆1 , z∆2 )(e1, e2) = 0 holds for all
points (z∆1 , z∆2 ) on the front segment, and let the point (0, 0) lie on the line segment
∆1. Furthermore, let the considered objective vector z lie at a · (e1, e2). Then, b1 =

a(−e22/e1, e2), and b2 = a(e1,−e21/e2) respectively, see Figure C.. Hence, the length of
shadow ∆1 of an objective z at distance a from the front segment, given by the normal
vector (e1, e2) is:

se(a) = ∥b1 − b2∥ = a
(e21 + e22)

3/2

e1e2
= a

1

e1e2
=: a · γ γ :=

1

e1e2
(The last step follows from the fact, that e is a unit vector and e21 + e22 = 1). Hence,
the shadow linearly increases with distance a. Let ã = 1/(µδ∆1γ) denote the distance
for which the number of points on the line segment becomes 1. All objective vectors
at distance a ≥ ã will be dominated, while for the remaining cases the probability is
µδ∆1se(a). Hence, the undominated area K above the line segment is:

K = ε

∫ ã

0

(1− µδ∆1se(x))wdx = ε

∫ ã

0

(1− µδ∆1xγ)wdx = ε
w

2µδ∆1γ

Now consider a second line segment on a different part of the front. Let superscripts ′,
and ′′ refer to variables of the first and second segment. Then the overall undominated
area becomes Ktotal = K ′ + K ′′ = εw′/(2µδ′

∆1γ′) + εw′′/(2µδ′′
∆1γ′′). Let the total

number of points in both segments is µδ′
∆1ε+µδ′′

∆1ε be constant. Given this constraint,
the undominated area Ktotal must be minimal for the given densities, otherwise one
could increase the hypervolume by moving points from one segment to the other, hence

δ′
∆1, δ′′

∆1 = arg min
δ′
∆1

,δ′′
∆1

Ktotal, given µδ′
∆1ε + µδ′′

∆1ε = C .

Using the Lagrange multiplier ∇x,y,lΛ(x, y, l) = 0, with
Λ(δ′

∆1, δ′′
∆1, l) = εw′(2µδ′

∆1γ′)−1 + εw′′(2µδ′′
∆1γ′′)−1 + l(δ′

∆1 + δ′′
∆1 − C)µε ,

one obtains the following two equations
∂Ktotal
∂δ′

∆1

= − εw′

2γ′µ(δ′
∆1)

2
+ lµε

!
= 0

∂Ktotal
∂δ′′

∆1

= − εw′′

2γ′′µ(δ′′
∆1)

2
+ lµε

!
= 0

hence
γ′(δ′

∆1)
2

w′ =
γ′′(δ′′

∆1)
2

w′′ ⇒
δ′
∆1

δ′′
∆1

=
(w′/γ′)

1/2

(w′′/γ′′)1/2

Since this holds for all line segment pairs ′, and ′′, one obtains
δF (z∗) ∝ (w(z∗)/γ∗)

1/2 =
√

w(z∗) · e∗
1e∗

2
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where z∗ denotes a point on the Pareto-front, while w(z∗) and (e∗
1, e∗

2) denote the weight
and normal vector at z∗ respectively.

Example C.: Consider the formulation (u, g(u)) for fronts as introduced in Section ..
Then e = 1√

1+g′2
(−g′, 1) and

δF (u) ∝
√

w(u)
−g′(u)

(1 + g′(u)2)
· 1 .

Hence, the result agrees with Eq. . on page . ◦

Arbitrary Dimensionality d
Consider an arbitrary number of objectives d, and a d- dimensional front. Consider
again an arbitrary small portion ∆d−1 of the front. Again let w and δ∆ be constant
in the considered region and the front be linear, expressed by the normal vector e =

(e1, · · · , ed). Let the considered objective vector z be at a(e1, . . . , ed). Then the vertices
of the shadow ∆d−1 are obtained by intersecting a(e1, · · · , ei−1, β, ei+1, · · · , ed), 1 ≤
i ≤ d, β ∈ R with the front, which gives the vertices

bi = a(e1, . . . , ei−1, ei − 1/ei, ei+1, · · · , ed)

= ae + (0, . . . , 0,−a/ei, 0, . . . , 0) (C.)
From Eq. C. it follows, that the vertices give an affine (d− 1)-simplex. For example,
the case d = 3 shown in Figure C. leads to a triangular shadow, while for d = 4 the
shadow is a tetrahedron. Hence, the (hyper-)volume of ∆d−1 is

se(a) = λ(∆d−1) = ad−1 1

(d− 1)!
∏d

i=1 ei

=: ad−1 · γ γ :=
1

(d− 1)!
∏d

i=1 ei

The distance ã, for which the number of points in the simplex becomes 1, is

µδ∆se(a)
!
= 1⇒ ã = (µδ∆γ)−1/(d−1)

and the undominated area becomes

K = ε

∫ ã

0

(1− µδ∆ad−1γ)wdx =
ε(d− 1)w

d(µδ∆γ)1/d−1

Determining K for two different regions on the front and taking the sum again gives
the minimization problem

min
δ′
∆

,δ′′
∆

Ktotal = K ′ +K ′′ =
ε(d− 1)w′

d(µδ′
∆γ′)1/(d−1)

+
ε(d− 1)w′′

d(µδ′′
∆γ′′)1/d−1

given µε(δ′
∆ + δ′′

∆) = C

Using Lagrange multipliers as for the biobjective case, and with
∂K

∂δ∆
= − εw

d(µδ∆γ)1/(d−1)δ∆
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the following equation results

− εw′

d(µδ′
∆γ′)1/(d−1)δ′

∆

+ λµε = − εw′′

d(µδ′′
∆γ′′)1/(d−1)δ′′

∆

+ λµε ,

and therefore
δ′
∆

δ′′
∆

=
w′/(γ′)

1/d

w′′/(γ′′)1/d
(C.)

Since Eq. C. holds for all considered pairs of front segments, the density is

δ(z∗) ∝ (w(z∗)/γ∗)
1/d ∝ d

√
w(z∗) ·

∏d
1 e∗

i

C. ·Proof of Theorem . on Page 

In order to proof the theorem, the following corollary is stated which directly follows
from the continuity of the density:

Corollary C.: As the number of point µ increases to infinity, the hypervolume contribu-
tion Ca = Ih(a, A) of all points a ∈ A approaches zero.

Proof. Let the contribution of a point a be denoted as Ca. Then, Ca is given by
Eq. C., see Figure C.. By the continuity of the density, both εa and ζa converge to
zero. Since by assumption |g′(ua)| <∞ also g(ua − εa)− g(ua) converges to zero, such
that integration domain converges to a null set. Because the weight function is finite,
Ca therefore converges to .

The previous corollary will be used in the following to proof Theorem .:

Proof. Let g(u) denote the Pareto front and let (υµ
i , g(υµ

i )), (υ
µ
j , g(υµ

j )) be two points
that belong to an optimal distribution of µ points on the front g. Let the distances
to the left neighbor (υµ

i−1 resp. υµ
j−1) of these points be εi and εj respectively and

the distances to the right neighbor (υµ
i+1 resp. υµ

j+1) be ζi and ζj respectively, see
Figure C.. Let w(u, v) denote the weight function. Let Ci and Cj denote the
contribution of the points υµ

i and υµ
j to the overall hypervolume, i.e.

Ca =

g(ua−εa)∫
g(ua)

ua+ζa∫
ua

w(u, v)dudv a ∈ {i, j} (C.)
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Figure C. Two hypervolume contri-
butions Ci and Cj on different parts of
the same front g(u).
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and let wa(u, v) and wa(u, v) with a = {i, j} denote the supremum and infimum re-
spectively of w(u, v) inside the domain of Ca, i.e.,

wa(u, v) := sup
ua≤u≤ua+ζa

g(ua)≤v≤g(ua−εa)

w(u, v) a ∈ {i, j} (C.)

wa(u, v) := inf
ua≤u≤ua+ζa

g(ua)≤v≤g(ua−εa)

w(u, v). (C.)

Using Eq. C. and Eq. C., the contribution Ca according to Eq. C. can be upper
and lower bounded by

Ca ∈
[
Ωwa(u, v),Ωawa(u, v)

]
with Ωa := ζa · (g(ua − εa)− g(ua)), a ∈ {i, j}

hence

Ωiwi(u, v)

Ωjwj(u, v)
≤ Ci

Cj
≤ Ωiwi(u, v)

Ωjwj(u, v)
. (C.)

In the following, the left hand side of Eq. C. is considered as µ → ∞; the same
derivations will also hold analogously for the right hand side. Injecting Ωa into the left
hand side of Eq. C. gives

Ωiwi(u, v)

Ωjwj(u, v)
=

ζi · (g(υµ
i − εi)− g(υµ

i ))wi(u, v)

ζj · (g(υµ
j − εj)− g(υµ

j ))wj(u, v)

and replacing g(υµ
a − εa)− g(υµ

a ) by a Taylor approximation leads to

=
ζi · (−εig

′(υµ
i ) + ε2i g′′(υµ

i ) + . . .) · wi(u, v)

ζj · (−εjg′(υµ
j ) + ε2j g′′(υµ

j ) + . . .) · wj(u, v)
.



 Appendix

According to the definition of the density δ(u) (see Theorem . on page ) ζa and εa

are given by ζa = 1/µδ(υµ
a ) and εa = 1/µδ(υµ

a−1) respectively, where a = {i, j}. Hence,

lim
µ→∞

Ωiwi(u, v)

Ωjwj(u, v)
= lim

µ→∞

1
µδ(υµ

i
) · (−

1
µδ(υµ

i−1
)g′(υµ

i ) +
1

µ2δ(υµ
i−1

)2 g′′(υµ
i )− . . .) · wi(u, v)

1
µδ(υµ

j
) · (−

1
µδ(υµ

j−1
)g′(υµ

j ) +
1

µ2δ(υµ
j−1

)2 g′′(υµ
j )− . . .) · wj(u, v)

= lim
µ→∞

δ(υµ
j )δ(υ

µ
j−1) · (−g′(υµ

i ) +
1

µδ(υµ
i−1

)g′′(υµ
i )− . . .) · wi(u, v)

δ(υµ
i )δ(υ

µ
i−1) · (−g′(υµ

j ) +
1

µδ(υµ
j−1

)g′′(υµ
j )− . . .) · wj(u, v)

= lim
µ→∞

δ(υµ
j )δ(υ

µ
j−1) · g′(υµ

i ) · wi(u, v)

δ(υµ
i )δ(υ

µ
i−1) · g′(υµ

j ) · wj(u, v)
,

and provided that both limits exist (they do as shown below) one can write

=
g′(υµ

i )

g′(υµ
j )
· lim

µ→∞

δ(υµ
j )δ(υ

µ
j−1)

δ(υµ
i )δ(υ

µ
i−1)

· lim
µ→∞

wi(u, v)

wj(u, v)
. (C.)

Due to the continuity of δ(u) as the number of points increases to infinity one has
δ(υµ

a )→ δ(υµ
a−1) for a = i, j. Hence the first limit becomes

lim
µ→∞

δ(υµ
j )δ(υ

µ
j−1)

δ(υµ
i )δ(υ

µ
i−1)

=
δ(υµ

j )
2

δ(υµ
i )

2

which is according to the density formula in Eq. . on page 

=
g′(υµ

j )w(υµ
j , g(υµ

j ))

g′(υµ
i )w(υµ

i , g(υµ
i ))

. (C.)

For the second limit, from Corollary C. and the assumption of a continuous weight
function it follows

lim
µ→∞

wi(u, v)

wj(u, v)
=

w(υµ
i , g(υµ

i ))

w(υµ
j , g(υµ

j ))
. (C.)

Injecting Eq. C. and Eq. C. into Eq. C. finally gives

lim
µ→∞

Ωiwi(u, v)

Ωjwj(u, v)
=

g′(υµ
i )

g′(υµ
j )
·

g′(υµ
j )w(υµ

j , g(υµ
j ))

g′(υµ
i )w(υµ

i , g(υµ
i ))
·

w(υµ
i , g(υµ

i ))

w(υµ
j , g(υµ

j ))
= 1 .

Therefore, Ci/Cj ≥ 1. By exchanging the supremum and infimum in Eq. C., it follow
also that Ci/Cj ≤ 1. From the squeeze theorem one therefore obtains limµ→∞ Ci/Cj =

1 which means that every point has the same hypervolume contribution.

C. ·Proof of Theorem . Stated on Page 

Before to state and prove Theorem ., one needs to establish a technical lemma.
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Lemma C.: Let assume that g is continuous on [umin, umax] and differentiable on
]umin, umax[. Let u2 ∈]umin, r1] and let us define the function Θ : [0, umax − umin]→ R
as

Θ(ε) =

∫ u2

umin+ε

(∫ g(umin)

g(umin+ε)

w(u, v)dv

)
du

and Γ : [0, u2 − umin]→ R as

Γ(ε) =

∫ umin+ε

umin

∫ r2

g(umin)

w(u, v) dv du .

If w is continuous, positive and limu→umin g′(u) = −∞ then for any r2 > g(umin)

lim
ε→0

Θ(ε)

Γ(ε)
= +∞ .

Proof. The limits of Θ and Γ for ε converging to 0 equal 0. Therefore, the l’Hôpital
rule is applied to compute limε→0

Θ(ε)
Γ(ε) . First of all, note that since g is differentiable

on ]umin, umax[, Θ and Γ are differentiable on ]0, umax − umin]. Moreover, it follows
that Θ(ε) = g(umin + ε, u2) where g is defined in Eq. C. except for the change from
g(υµ

0 ) to g(umin). The proof of Lemma C., however, does not change if exchanging the
constant g(υµ

0 ) to the constant g(umin), and one can deduce

Θ′(ε) = −g′(umin + ε)

∫ u2

umin+ε

w(u, g(umin + ε))du−
∫ g(umin)

g(umin+ε)

w(umin + ε, v) dv .

From the fundamental theorem of calculus, one also has that

Γ′(ε) =

∫ r2

g(umin)

w(umin + ε, v) dv .

From the l’Hôpital rule, it is deduced that

lim
ε→0

Θ(ε)

Γ(ε)
= lim

ε→0

Θ′(ε)

Γ′(ε)
. (C.)

By continuity of w, it is deduced that

lim
ε→0

Γ′(ε) = lim
ε→0

∫ r2

g(umin)

w(umin + ε, v) dv =

∫ r2

g(umin)

w(umin, v) dv

and by continuity of g and w, it is deduced that

lim
ε→0

∫ u2

umin+ε

w(u, g(umin + ε))du =

∫ u2

umin

w(u, g(umin))du

obviously, the term is not zero since w > 0 and u2 > umin and

lim
ε→0

∫ g(umin)

g(umin+ε)

w(umin + ε, v) dv = 0 .
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Therefore limε→0 Θ
′(ε) = limε→0−g′(umin + ε) ·

∫ u2

umin
w(u, g(umin))du = +∞ because

u2 is fixed, i.e., independent of ε, and therefore, the integral is constant. By Eq. C.
one obtains the result.

Now, Theorem . can finally be proven.

Proof. First, the result for the left extreme is proven. Let υµ
1 and υµ

2 denote the two
leftmost points of an optimal µ-distribution for Iw

H if µ ≥ 2. In case of µ = 1, let υµ
1

be the optimal position of the (single) point. In this case, the contribution of υµ
1 in the

first dimension extends to the reference point, which is represented by setting υµ
2 = r1

such that from now on, it is assumed µ ≥ 2. Furthermore, let limu→umin g′(u) = −∞
and let υµ

1 = umin in order to get a contradiction. Let Iw
h (umin) be the hypervolume

solely dominated by the point umin. Shifting υµ
1 to the right by ε > 0 (see Figure C.),

then the new hypervolume contribution Iw
h (umin + ε) satisfies

Iw
h (umin + ε) = Iw

h (umin) +

∫ υµ
2

umin+ε

∫ g(umin)

g(umin+ε)

w(u, v)dvdu

−
∫ umin+ε

umin

∫ r2

g(umin)

w(u, v)dvdu .

Identifying u2 with υµ
2 in the definition of Θ in Lemma C., the previous equation can

be rewritten as

Iw
h (umin + ε) = Iw

h (umin) + Θ(ε)− Γ(ε) .

From Lemma C., for any r2 > g(umin), there exists an ε > 0 such that Θ(ε)
Γ(ε) > 1

and thus Θ(ε) − Γ(ε) > 0. Thus, for any r2 > g(umin), there exists an ε such that
Iw

h (umin + ε) > Iw
h (umin) and thus Iw

h (umin) is not maximal which contradicts the fact
that υµ

1 = umin. In a similar way, the result for the right extreme can be proven.

C. ·Proof of Theorem . on Page 

Proof. The proof is analogous to Theorem . setting

Iw
h (uµ;uµ−1, r1) =

∫ r1

uµ

∫ g(uµ−1)

g(uµ)

w(u, v) dv du (C.)

and proofing a proposition analogous to Proposition . stating that if uµ → Iw
h (uµ;umin, r1)

is maximal for uµ = umax, then for any uµ−1 ∈ [umin, uµ−1] the contribution Iw
h (uµ;uµ−1, r1)

is maximal for uµ = umax too. Equation . then follows taking the partial derivative
of Eq. C. according to Lemma C..
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Figure C. If the function g(u) describing the Pareto front has an infinite derivative at its lest extreme,
the lestmost Pareto-optimal point at umin will never coincide with the lestmost point υ

µ
 of an optimal

µ-distribution for Iwh (lest); similarly, if the derivative is zero at the right extreme, the rightmost Pareto-
optimal point at umax will never coincide with the rightmost point υ

µ
µ (right). The reason is in both cases

that for any finite r , and r respectively, there exists an ε > , such that the dominated space gained (⊕)
when moving υµ from umin to umin+ε, and υ

µ
µ from umax to umax - ε respectively, is larger than the space no

longer dominated (⊖).

C. ·Proof of Corollary . on Page 

Proof. Setting w(u, v) to 1 in Eq. . of Theorem . gives
−g′(uµ)(K1 − uµ) > g(umin)− g(uµ), ∀uµ ∈ [umin, umax[

with any r1 ≥ K1, the rightmost extreme is included. The previous equation writes
K1 > (g(uµ)− g(umin))/g′(uµ) + uµ for all uµ ∈ [umin, umax[, (C.)

Since K1 has to be larger than the right-hand side of Eq. C. for all uµ in [umin, umax[,
it has to be larger than the supremum of the left hand side of Eq. C. for uµ in
[umin, umax[ and thus

K1 > sup{u +
g(u)− g(umin)

g′(u)
: u ∈]umin, umax]} (C.)

R1 is defined as the infimum over K1 satisfying Eq. C. in other words

R1 = sup{u +
g(u)− g(umin)

g′(u)
: u ∈]umin, umax]} .

C. ·Proof of Theorem . on page 

Proof. Let υµ
1 (R

1) (resp. υµ
1 (R

2)) be the leftmost point of an optimal µ-distribution for
Iw

H where the hypervolume indicator is computed with respect to the reference point R1

(resp. R2). Similarly, let υµ
µ(R

1) (resp. υµ
µ(R

2)) be the rightmost point associated with
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Figure C. If the optimal distribution of µ points contains the extremes (lest-hand side), then aster
increasing the reference point from R to R the extremes are still included in the optimal µ-distribution
(right-hand side). This can be proven by contradiction (middle).

an optimal µ-distribution for Iw
H where the hypervolume is computed with respect to

the reference point R1 (resp. R2). By assumption, υµ
1 (R

1) = umin and υµ
µ(R

1) = umax.

Assume, in order to get a contradiction, that υµ
1 (R

2) > umin (i.e., the leftmost point
of the optimal µ-distribution for Iw

H and R2 is not the left extreme) and assume that
υµ

µ(R
2) = umax for the moment. Let Iw∗

H,µ(R
2) (resp. Iw∗

H,µ(R
1)) be the hypervolume

associated with an optimal µ-distribution for Iw
H computed with respect to the reference

point R2 (resp. with respect to R1). Then Iw∗
H,µ(R

2) is decomposed in the following
manner (see Figure C.)

Iw∗
H,µ(R

2) = A1 + A2 + A3 (C.)

where, A1 is the hypervolume (computed with respect to the weight w) enclosed in
between the optimal µ-distribution associated with R2 and the reference point R1, A2 is
the hypervolume (computed with respect to w) enclosed in the rectangle whose diagonal
extremities are R2 and (υµ

1 (R
2), r12) and A3 is the hypervolume (again computed with

respect to w) enclosed in the rectangle with diagonal [(r11, g(umax)), (r
2
1, r12)]. Let us now

consider an optimal µ-distribution for Iw
H associated with the reference point R1 and

denote this optimal µ-distribution (υµ
1 (R

1), . . . , υµ
µ(R

1)). The weighted hypervolume
enclosed by this set of points and R2 equals Iw∗

H,µ(R
1) + A2 + A′

2 + A3 where A′
2 is the

hypervolume (computed with respect to w) enclosed in the rectangle whose diagonal is
[(umin, r12), (υ

µ
1 (R

2), r22)] (Figure C.). By definition of Iw∗
H,µ(R

2) one obtains

Iw∗
H,µ(R

2) ≥ Iw∗
H,µ(R

1) + A2 + A′
2 + A3 . (C.)

However, since Iw∗
H,µ(R

1) is the maximal hypervolume value possible for the reference
point R1 and a set of µ points, it follows

A1 ≤ Iw∗
H,µ(R

1)
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and thus with Eq. C.
Iw∗

H,µ(R
2) ≥ A1 + A2 + A′

2 + A3 .

From Eq. C., it can be deduced that
Iw∗

H,µ(R
2) ≥ Iw∗

H,µ(R
2) + A′

2 . (C.)
Since having assumed that υµ

1 (R
2) > umin and that r22 > r12, if follows A′

2 > 0.
And thus, Eq. C. implies that Iw∗

H,µ(R
2) > Iw∗

H,µ(R
2), which contradicts the initial

assumption. In a similar way, a contradiction can be shown if assuming that both
υµ
1 (R

2) > umin and υµ
µ(R

2) < umax, i.e., if both extremes are not contained in an
optimal µ-distribution for Iw

H and the reference point R2. Also the proof for the right
extreme is similar.

C. ·Proof of Theorem . on Page 

Proof. Let ε2 ∈ R>0 be fixed and let R = (R1, R2) = (r1,RNadir
2 + ε2) for r1 be arbi-

trarily chosen with r1 ≥ RNadir
1 . The optimal µ-distributions for Iw

H and the reference
point R obviously depend on µ. Let υµ

2 (R) denote the second point of an optimal
µ-distribution for Iw

H when R is chosen as reference point. It is known that for µ to
infinity, υµ

2 (R) converges to umin. Also, because g′ is continuous on [umin, umax], the
extreme value theorem implies that there exists θ > 0 such that |g′(u)| ≤ θ for all
u ∈ [umin, umax]. Since g′ is negative one therefore obtains
∀u ∈ [umin, umax] : −g′(u) ≤ θ . (C.)

In order to prove that the leftmost point of an optimal µ-distribution is umin, it is
enough to show that the first partial derivative of Iw

H is non-zero on ]umin, υµ
2 (R)].

According to Eq. . and Lemma C., the first partial derivative of Iw
H((υµ

1 , . . . , υµ
µ))

equals (omitting the dependence in R for the following equations)

∂1Iw
H = −g′(υµ

1 )

∫ υµ
2

υµ
1

w
(
u, g(υµ

1 )
)
du−

∫ R2

g(υµ
1
)

w(υµ
1 , u)du

=
(
−g′(υµ

1 )
) ∫ υµ

2

umin

w
(
u, g(υµ

1 )
)
du−

(
−g′(υµ

1 )
) ∫ υµ

1

umin

w
(
u, g(υµ

1 )
)
du

−
∫ RNadir

2

g(υµ
1
)

w(υµ
1 , v)dv −

∫ RNadir
2 +ε2

RNadir
2

w(υµ
1 , v)dv .

Since the second and third summand are non-positive due to w being strictly positive
it follows

≤
(
−g′(υµ

1 )
) ∫ υµ

2

umin

w
(
u, g(υµ

1 )
)
du−

∫ RNadir
2 +ε2

RNadir
2

w(υµ
1 , v)dv (C.)
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and because w ≤W and with Eq. C., Eq. C. can be upper bounded by

≤ θW (υµ
2 − umin)−

∫ RNadir
2 +ε2

RNadir
2

w(υµ
1 , v)dv . (C.)

Since υµ
2 converges to umin for µ to infinity, and −

∫RNadir
2 +ε2

RNadir
2

w(υµ
1 , v)dv < 0 we deduce

that there exists µ1 such that for all µ larger than µ1, Eq. C. is strictly negative and
thus for all µ larger than µ1, the first partial derivative of Iw

H is non zero, i.e. υµ
1 = umin.

With Lemma . it follows that all reference points dominated by R will also allow to
obtain the left extreme.

The same steps lead to the right extreme. Let ε1 ∈ R>0 be fixed and let R = (RNadir
1 +

ε1, r2) for r2 ≥ RNadir
2 . Following the same steps for the right extreme, one needs

to prove that the µ-th partial derivative of Iw
H is non zero for all υµ

µ ∈ [υµ
µ−1, umax[.

According to Eq. C.,

∂µIw
H(υµ

1 , . . . , υµ
µ) =−

∫ g(υµ
µ−1

)

g(υµ
µ)

w(υµ
µ , v)dv − g′(υµ

µ)

∫ RNadir
1 +ε1

υµ
µ

w(u, g(υµ
µ))du

≥−W (f(υµ
µ−1)− f(υµ

µ))− g′(υµ
µ)

∫ RNadir
1 +ε1

υµ
µ

w(u, g(υµ
µ))du

and since υµ
µ ≤ RNadir

1 , one obtains

≥−W (f(υµ
µ−1)− f(υµ

µ))− g′(υµ
µ)

∫ RNadir
1 +ε1

RNadir
1

w(u, g(υµ
µ))du

By continuity of f and the fact that both υµ
µ and υµ

µ−1 converge to umax the term

W (f(υµ
µ−1)−f(υµ

µ)) converges to zero. Since−g′(υµ
µ)
∫RNadir

1 +ε1
RNadir

1
w(u, g(υµ

µ))du is strictly
positive, it can be deduced that there exists µ2 such that for all µ ≥ µ2, ∂µIw

H(υµ
1 , . . . , υµ

µ)

is strictly positive and thus for all µ larger than µ2 the µ-th partial derivative of Iw
H is

non zero, i.e. υµ
µ = umax. With Lemma . it can be deduced that all reference points

dominated by R will also allow to obtain the right extreme.

C. ·Derivation of Results in Table . on Page  and Figure . on page 

In this section, the results presented in Section . and . are applied to the test
problems in the ZDT [], the DTLZ [], and the WFG [] test function suites.
The results are derived for the unweighted case of IH , i.e., a weight function w(u, v) =

1, but they can also be derived for any other weight function w. In particular, the
function g(u) describing the Pareto front is derived, and its derivative g′(u) which
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directly leads to the density δF (u). Furthermore, a lower bound R is derived for
the choice of the reference point such that the extremes are included, and compute
an approximation of the optimal µ-distribution for µ = 20 points is compared. For
the latter, the approximation schemes as proposed in [], a paper by the author and
colleagues, are used to get a precise picture for a given µ. The densities and the lower
bounds R for the reference point are obtained by the commercial computer algebra
system Maple ..

Table . on Page  summarizes the results on the density and the lower bounds for
the reference point for all problems investigated in the following. Moreover, Figure .
on page  shows a plot of the Pareto front, the obtained approximation of an optimal
µ-distribution for µ = 20, and the derived density δF (u) (as the hatched area on top of
the front g(u)) for all investigated test problems.

The presented results show that for several of the considered test problems, analytical
results for the density and the lower bounds for the reference point can be given eas-
ily—at least if a computer algebra system such as Maple is used. Otherwise, numerical
results can be provided that approximate the mathematical results with an arbitrary
high precision (up to the machine precision) which also holds for the approximations
of the optimal µ-distributions shown in Figure ..

Definitions and Results for the ZDT Test Function Suite
There exist six ZDT test problems—ZDT to ZDT—of which ZDT has a discrete
Pareto front and is therefore excluded from our investigations []. In the following
let x = (x1, . . . , xn) ∈ Rn denote the decision vector of n real-valued variables. Then,
all ZDT test problems have the same structure

minimize f1(x1)

minimize f2(x) = h(x2, . . . , xn) · h
(
f1(x1), h(x2, . . . , xn)

)
where 0 ≤ xi ≤ 1 for i ∈ {1, . . . , n} except for ZDT. The distance to the Pareto front
is determined by the functional h(x) ≥ 1. Based on this observation, the Pareto front
g(u) is obtained by setting h(x) = 1.

ZDT: For the definition of the problem, refer to Example . on page  and only
recapitulate the front shape of g(u) = 1 −

√
u with umin = 0 and umax = 1, see

Figure .(a) on page . From g′(u) = −1/(2
√

u) the density on the front according
to Eq. . is

δF (u) =
3 4
√

u

2
√
4u + 1
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Since g′(umin) = −∞, the left extreme is never included as stated already in Exam-
ple .. The lower bound of the reference point R = (R1,R2) to have the right
extreme, according to Eq. ., equals

R1 = sup
u∈]umin,umax]

u +
1−
√

u− 1

−1/(2
√

u)
= sup

u∈]0,1]

3u = 3 .

ZDT: For the definition of the ZDT problem, refer to Example . on page  and
recapitulate the front shape of g(u) = 1−u2 with umin = 0 and umax = 1 and the density
of δF (u) = 3

√
u

2
√

1+4u2
only (see Figure .(b)). The lower bounds for the reference point

R = (R1,R2) to obtain the extremes are according to Eq. . and Eq. . on pages
 and  respectively.

R1 = sup
u∈]umin,umax]

u +
1− u2 − 1

−2u
= sup

u∈]0,1]

3

2
u =

3

2
and

R2 = sup
u∈[umin,umax[

−2u · (u− 1) + 1− u2 = sup
u∈[0,1[

2u− 3u2 + 1 =
4

3

respectively.

ZDT: The problem formulation of ZDT is
minimize f1(x1) = x1

minimize f2(x) = h(x) ·
(
1−

√
f1(x1)/h(x)− (f1(x1)/h(x)) sin(10πf1(x1))

)
h(x) = 1 +

9

n− 1

n∑
i=2

xi

subject to 0 ≤ xi ≤ 1 for i = 1, . . . , n

Due to the sine-function in the definition of f2, the front is discontinuous: g : D →
[−1, 1], u 7→ 1−

√
u−u·sin(10πu) where D = [0, 0.0830]∪(0.1823, 0.2578]∪(0.4093, 0.4539]∪

(0.6184, 0.6525] ∪ (0.8233, 0.8518] is derived numerically. Hence umin = 0 and umax =

0.8518. The density is:

δF (u) = C ·

√
1

2
√

u
+ sin (10πu) + 10πu cos (10πu)√

1 +
(

1
2

√
u
+ sin (10πu) + 10πu cos (10πu)

)2 C ≈ 1.5589

where u ∈ D and δF (u) = 0 otherwise. Figure .(c) shows the Pareto front and the
density. Since g′(umin) = −∞ and g′(umax) = 0, the left and right extremes are never
included.
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ZDT: The problem formulation of ZDT is
minimize f1(x1) = x1

minimize f2(x) = h(x) ·
(
1−

√
f1(x1)/h(x)

)
h(x) = 1 + 10(n− 1) +

n∑
i=2

(x2
i − 10 cos(4πxi))

subject to 0 ≤ x1 ≤ 1, −5 ≤ xi ≤ 5 for i = 2, . . . , n .

The Pareto front is again reached for h(x) = 1 which gives g(u) = 1−
√

u. Hence, the
density and the choice of the reference point is the same as for ZDT.

ZDT: The sixth problem of the ZDT family is defined as
minimize f1(x1) = 1− e−4x1 sin6(6πx1)

minimize f2(x) = h(x) ·
(
1− (f1(x1)/h(x))2

)
h(x) = 1 + 9

(
(

n∑
i=2

xi)/(n− 1)

)1/4

subject to 0 ≤ xi ≤ 1 for i = 1, . . . , n .

The Pareto front is g : [umin, umax] → [0, 1], u 7→ 1 − u2 with umin ≈ 0.2808 and
umax = 1, see Figure .(d). Hence, the Pareto front coincides with the one of ZDT
except for umin which is shifted slightly to the right. From this, it follows that also the
density is the same except for a constant factor, i.e., δF (u) is larger than the density
for ZDT by a factor of about 1.25. For the lower bound R of the reference point, one
obtains

R1 = sup
u∈]umin,umax]

u +
1− u2 − (1− u2

min)

−2u

= sup
u∈]0.2808,1]

u2
min − 3u2

−2u
=

3− u2
min

2
≈ 1.461

and
R2 = sup

u∈[umin,1[

−2u(u− umax) + 1− u = sup
u∈[umin,1[

2u− 3u2 + 1 =
4

3
.

Hence, the lower bound R2 is the same as for ZDT, but R1 differs slightly from ZDT.

Definitions and Results for the DTLZ Test Function Suite
The DTLZ test suite offers seven test problems which can be scaled to any number of
objectives []. For the biobjective variants, DTLZ and DTLZ are degenerated, i.e.,
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the Pareto fronts consist of only a single point and are therefore not examined in the
following.

The DTLZ test problems share—for the biobjective case—the following generic struc-
ture

minimize f1(x) =
(
1 + h(xM )

)
h1(x)

minimize f2(x) =
(
1 + h(xM )

)
h2(x)

where xM denotes a subset of the decision variables x with h(xM ) ≥ 0 and the Pareto-
optimal points being achieved for h(xM ) = 0.

DTLZ: The problem formulation for DTLZ is
minimize f1(x) =

(
1 + h(x)

)
1/2x1

minimize f2(x) =
(
1 + h(x)

)
1/2(1− x1)

h(xM ) = 100

(
n +

∑
xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))

)
subject to 0 ≤ xi ≤ 1 for i = 1, . . . , n .

The Pareto front is obtained for h(x) = 0 which leads to g(u) = 1/2− u with umin = 0

and umax = 1/2, see Figure .(e) on page . According to Eq. ., the density on
the front is δF (u) =

√
2. A lower bound for the reference point is given by

R1 = sup
u∈]0,1/2]

1− u = 1

and R2 = R1 for symmetry reasons.

DTLZ: For the definition of the problem, refer to Example . on page  and only
recapitulate the front shape of g(u) =

√
1− u2 with umin = 0 and umax = 1, see

Figure .(f). According to Eq. ., the density on the front is

δF (u) =

√
π

Γ(3/4)2

√
u
√

1− u2

where Γ denotes the gamma-function, i.e., Γ(3/4) ≈ 1.225. A lower bound for the
reference point is given by

R1 = sup
u∈]umin,umax]

u +

√
1− u2 −

√
1− u2

min

−u/
√
1− u2

= sup
u∈]0,1]

√
1− u2 − 1 + 2u2

u
= 1/2

(√
3− 1

)
33/4
√
2 ≈ 1.18

and for symmetry reasons R2 = R1.
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DTLZ: The problem formulation of DTLZ is the same as for DTLZ except for the
function h(x). However, the Pareto front is formed by the same decision vectors as for
DTLZ, i.e., for h(x) = 1 and the fronts of DTLZ and DTLZ are identical. Hence,
also the density and the choice of the reference point are the same as for DTLZ.

DTLZ: In DTLZ, the same functions as in DTLZ are used with an additional meta-
variable mapping m : [0, 1] → [0, 1] of the decision variables, i.e., the decision variable
m(xi) = xα

i is used instead of the original decision variable xi in the formulation of the
DTLZ function. This transformation does not affect the shape of the Pareto front and
the results on optimal µ-distributions for the unweighted hypervolume indicator again
coincide with the ones for DTLZ.

DTLZ: The problem formulation of DTLZ is
minimize f1(x) = x1

minimize f2(x) = (1 + h(x))

(
2− x1

1 + h(x)
(1 + sin(3πx1))

)
h(xM ) = 1 +

9

|xM |
∑

xi∈xM

xi

subject to 0 ≤ xi ≤ 1 for i = 1, . . . , n .

The corresponding Pareto front is discontinuous and described by the function g : D →
[0, 4], u 7→ 4−u(1+ sin(3πu)) where D = [0, 0.2514]∪ (0.6316, 0.8594]∪ (1.3596, 1.5148]∪
(2.0518, 2.1164] is derived numerically, see Figure .(g). Hence, umin = 0 and umax ≈
2.1164. The derivative of g(u) is g′(u) = −1− sin(3πu)− 3πu cos(3πu) and the density
therefore is

δF (u) = C ·
√

1 + sin (3π u) + 3πu cos (3π u)√
1 +

(
1 + sin (3π u) + 3πu cos (3π u)

)2
with C ≈ 0.6566. ForR, one finds by numerical methodsR1 ≈ 2.481 andR2 ≈ 13.3720.

Definitions and Results for the WFG Test Function Suite
The WFG test suite offers nine test problems which can be scaled to any number of
objectives. In contrast to DTLZ and ZDT, the problem formulations are build using
an arbitrary number of so-called transformation functions. These functions are not
stated here, the interested reader is refered to []. The resulting Pareto front shape is
determined by parameterized shape functions ti mapping xi ∈ [0, 1] to the ith objective
in the range [0, 1]. All test functions WFG to WFG share the same shape functions
and are therefore examined together in the following.
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WFG: For WFG, the shape functions are convex and mixed respectively, i.e.

t1(x) = 1− cos(x1π/2)

t2(x) = 1− x1 −
sin(10πx1)

10π

which leads to the Pareto front

g(u) =
2ρ− sin (2 ρ)

10π
− 1

with ρ = 10 arccos(1 − u), umin = 0 and umax = 1, see Figure .(h). The density
becomes

δF (u) = C ·

√√√√ 2 (1− cos (2ρ))π√
u (2− u)

(
π2 − 4

(1−cos(2ρ))2

u(u−2)

)
with C ≈ 1.1569. Since g′(umax) = 0 the rightmost extreme point is never included in
an optimal µ-distribution for Iw

H . For the choice of R2 the analytical expression is very
long and therefore omitted. A numerical approximation leads to R2 ≈ 0.9795.

WFG: For WFG, the shape functions are convex and discontinuous respectively, i.e.,

t1(x) = 1− cos(x1π/2)

t2(x) = 1− x1 −
cos(10πx1 + π/2)

10π

which leads to the discontinuous Pareto front g : D → [0, 1],

u 7→ 1− 2
(π − 0.1ρ) cos2 (ρ)

π

where ρ = arccos (u− 1), and with a numerically derived domain D = [0, 0.0021] ∪
(0.0206, 0.0537] ∪ (0.1514, 0.1956] ∪ (0.3674, 0.4164] ∪ (0.6452, 0.6948] ∪ (0.9567, 1], such
that umin = 0 and umax = 1, see Figure .(i). The density becomes

δF (u) = C ·
√
−g′(u)√

1 + g′(u)2

with C ≈ 0.44607, and

g′(u) = −2 cos (ρ) (cos (ρ) + 20 sin (ρ)π − 2 sin (ρ) ρ)√
u (2− u)π

∀u ∈ D and δF (u) = 0 otherwise. Again, g′(0) = −∞ such that the leftmost extreme
point is never included in an optimal µ-distribution for Iw

H . For the rightmost extreme
one finds R1 ≈ 2.571.
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WFG: For WFG, the shape functions are both linear, i.e.
t1(x) = x1

t2(x) = 1− x1

which leads to the linear Pareto front g(u) = 1−u with umin = 0 and umax = 1. Hence,
the density is δF (u) = 1/

√
2, see Figure .(e) for a scaled version of this Pareto front.

For the choice of the reference point the same arguments as for DTLZ hold, which
leads to R = (2, 2).

WFG to WFG: For the six remaining test problems WFG to WFG, the shape func-
tions t1 and t2 are both concave, i.e.,

t1(x) = sin(x1π/2)

t2(x) = cos(x1π/2)

which leads to a spherical Pareto front g(u) =
√
1− u2 with umin = 0 and umax = 1.

Hence, the Pareto front coincides with the front of DTLZ, and consequently also the
density and the choice of the reference point are the same as for DTLZ.

D · Complementary Material to Chapter 

D. ·Solving the Hypervolume Subset Selection Problem (HSSP) in d

Several evolutionary algorithms aim at maximizing the hypervolume indicator in their
environmental selection step which can be formulated as solving the Hypervolume Sub-
set Selection Problem (HSSP): given a set of solutions A and 0 ≤ q ≤ |A|, find a subset
A∗ ⊆ A with |A∗| = q, such that the weighted hypervolume indicator of A∗ is maximal.

While for more than two objectives the HSSP problem is expected to be difficult and
for this reason greedy heuristics are used to tackle the HSSP, e.g., in [, , ],
here an efficient exact algorithm is proposed for the case of  objectives—using the
fact that the hypervolume contribution of an objective vector only depends on its
two adjacent neighbors. Exploiting this property, dynamic programming [] can be
used to solve the problem exactly in time O(|A|3) as opposed to O(|A|2) for the greedy
approach by combining solutions of smaller subproblems P t−1

c in a bottom-up fashion to
solutions for larger subproblems P t

c : for a fixed solution ac ∈ A and a t ∈ {0, . . . , |A|},
the subproblem P t

c is defined as finding the set At
c ⊆ A of t solutions maximizing

For example, on the lest hand side of Figure D. the hypervolume contribution of o is bounded by o and o but not
by o , o or o . This in turn means, that the increase in hypervolume, when adding o to any subset whose lest-most
element is o , is equal.
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o₁

o₂

o₃
o₄

o₅
o₆

-
-

1
5 {5}S =

1
4 {4}S =

1
3 {3}S =
1
3 112h = 1

4 60h =

1
5 55h = 1

6 {6}S =
1
6 26h =

1
5 {5}S =

1
3 {3}S =

o₁

o₂

o₃
o₄

o₅
o₆

-
-

2
3 72 55h = +

o₁

o₂

o₃
o₄

o₅
o₆

-

-

2
2 {2,3}S =
2
2 124h =

2
3 127h =

2
3 {3,5}S = 2

4 {4,6}S =
2
4 66h =

2
5 59h =

2
5 {5,6}S =

Figure D. Three out of six objective vectors need to be
selected. The Dynamic Programming HSSP solver shown
in Algorithm  starts by calculating subsets of size  (top
lest). Then the results (top middle) are combined to sets of
size of  (top right) and finally of size  (lest).

o₁

o₂

o₃
o₄

o₅
o₆

-
-

3
1 {1,3,5}S =
3
1 142h =

3
2 {2,3,5}S =
3
2 139h = 3

3 {3,5,6}S =
3
3 131h =

3
4 {4,5,6}S =
3
4 69h =

the hypervolume such that At
c contains ac and in addition, only elements ak, k ∈

{1, . . . , |A|}, lying to the right of ac, i.e., f1(ac) ≤ f1(ak).

Obviously, {ac} is the solution for P 1
c . According to the above made statement, the

solution for P t
c with t > 1 can now be easily found when considering the unions of {ac}

with the solutions of all P t−1
k with f1(ac) ≤ f1(ak) and taking the resulting solution

set with the highest hypervolume. Once the solutions for t = q are determined, the
subset which then has the largest hypervolume corresponds to the solution to the overall
problem. Algorithm  shows the pseudo code of the procedure where sets St

c of indices
instead of the sets At

i are considered for clarity. The algorithm is illustrated by means
of an example:

Example D.: Consider six objective vectors o1 to o6 of which one likes to choose those
q =  that maximize the hypervolume, see Figure D.. In the first stage (a), the
optimal subsets of size  and their hypervolume value are calculated (Lines  and  in
Algorithm ). Please note that some subsets do not exist or will not be used to build
the overall solution and can therefore be neglected (dashes).

In the next stages, the subsets of size t =  to q (Lines -) are determined for all
individuals oc (Lines -). To this end, the hypervolume of combining oc with any
subset to its right of size t −  (Lines -) are calculated. For example, in the top middle
of Figure D. o3 is combined with the subset S1

5 to form S2
3 = {3, 5} with hypervolume

h1
3 = . In this way, all subsets of size  (c) and then of size  (d) are determined.
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: h1
i ← hi := Cw

H

(
(oi,1, oi,2), r

)
∀ 1 ≤ c ≤ p

: S1
c ← {c} ∀ q ≤ c ≤ p (optimal subsets)

: for t = 2 to q do (bottom-up approach)
: for c = q − t + 1 to p− t + 1 do (subproblem)
: l← (0, . . . , 0)

: for d = c + 1 to p− t + 1 do
: ld = ht−1

d + Cw
H

(
(oc,1, oc,2), (od,1, r2)

)
: m← arg maxi li

: St
c ← {c} ∪ St−1

m (merge c with Sm and …)
: ht

c ← lm (…update hypervolume)
: m← arg maxi hq

i (pick best subset)
: return Sq

m (solution to overall problem)

Algorithm  HSSP-Solver. Requires a matrix O := (oi,j)p ×  , where the rows represent the objective
vectors sorted in ascending order according to the first objective, a subset size q ≥ , and a reference
point r = (r , r). The function CwH (l, u) returns the weighted hypervolume of the rectangle from the lower
lest corner l = (l , l) to the upper right corner u = (u ,u). The algorithm returns a set S that references
rows of O that maximize the weighted hypervolume.

Reaching t = q, the optimal solution to the overall problem corresponds to the set with
the largest hypervolume, in this example S3

1 = {1, 3, 5} with value h3
1 =  (Line ).◦

Note that the advantage of the exact algorithm over often used greedy approaches for
HSSP is that it overcomes the non-convergence of greedy algorithms, see [] for details.

D. ·Proof of Theorem . on page 

Proof. (i) It needs to be shown that no objective vector outside the hyperrectangle
Sr(x) is solely dominated by x. Assume to the contrary that there were an objective
vector z outside Sr(x) that is dominated by x exclusively. The vector can lie outside
the hyperrectangle for two reasons: Firstly, because z is smaller than f(x) in at least
one objective, say s. This means that zs < fs(x) which contradicts f(x) 6 z. Secondly,
because f(x) is larger than the upper vertex u of Sr(x) in at least one objective t,
i.e., ft(x) > ut. In the last case—according to Definition .—there has to be an
decision vector x′ ∈ A \x with ft(x

′) = ut and x′ ≼�t x. Moreover, f(x) 6 z by
assumption. Hence, f(x′) 6 z and z is not solely dominated by x (fi(x

′) ≤ fi(x)∀i ∈
{1, . . . , t− 1, t + 1, . . . , d} due to x′ ≼�t x, and ft(x

′) = ut < ft(x) because ft(x) > ut).

(ii) The sampling hyperrectangle of x is defined by the lower vertex l := f(x) and
the upper vertex u, see Eq. .. There are two ways to decrease the volume of
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the hyperrectangle: Firstly, at least one coordinate, say s, of the lower vertex l is
increased. This would imply, however, that f(x) is not included in the sampling
space anymore since ls > fs(x). Secondly, at least one coordinate of the upper
vertex u is decreased. Consider decreasing element ut by ε < ut − ft(x) to get
the new upper vertex u′ := (u1, . . . , ut − ε, . . . , ud) where ut − ε > ft(x). Let e :=
(f1(x), . . . , ft−1(x), ut, ft+1(x), . . . , fd(x)) denote one of the vertices adjacent to z. On
the one hand does e, because of coordinate t, not belong to the sampling space. On the
other hand, e is still dominated by x since ft(x) < u′

t. Hence, there needs to be another
point x′ ∈ A \x that dominates e (If not, x would be the only point dominating e,
which therefore needed to be included in the sampling hyperrectangle). But x′ would
then as well dominate x in all but coordinate t. This contradicts Eq. . and therefore
no such vector x′ exists. Hence, no other decision vector apart from x dominates point
e and the sampling hyperrectangle is not compliant with Eq. ..

D. ·Sampling-Based Hypervolume-Oriented Algorithm (SHV)

In order to implement the sampling procedure derived in Section .. into an algorithm,
the Regular Hypervolume-based Algorithm (RHV) shown in algorithm  is used. The
only modification with respect to the original proposition based on the exact hypervol-
ume calculation concerns the fitness calculation (Lines  and ) which is replaced by
an approximation scheme. The modified algorithm is shown in Algorithm .

Step : Drawing Initial Samples
First, the sampling spaces Sr

i are calculated for all solutions xi according to Defini-
tion ., see Lines  to  of Algorithm . Then a few initial samples mpor are drawn
for each individual. Based on that, the contributions are estimated (Line ) according
to Eq. .. Given the initial estimates, the following statistical test is used to determine
the probability, that the solution with the smallest contribution has obtained also the
smallest contribution estimate.

Step : Determining the Probability of Correct Selection
Consider k decision vectors xi, 1 ≤ i ≤ k, with contribution estimates λ̂(Ci), and let
mi and Hi denote the underlying number of samples and hits respectively. Without
loss of generality, let xk be the decision vector with the smallest estimate (or one of the

The first time the test is applied, mi = mpor holds.
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: U ← A (sampling has to be redone for all individuals xi ∈ U)
: while |A| > k′ do
: mtotal ← 0

: for all xi ∈ U do (reset sampling information)
: Sr

i ← CalculateSamplingHyperrectangle(A, i)
: Ii = (0, 0, Sr

i ) (triple of sampling statistics: (mi, Hi, Sr
i ))

: Ii ← MonteCarloSampling( Ii, mpor)
: mtotal ← mtotal + mpor

: I ← {I1, . . . , I|A|} (set containing all sampling triples)
: w, c← GetIndexOfWorstIndividualAndConfidence(I)
: while c < α and mtotal < mmax do
: i← GetIndexOfNextIndividualToBeSampled(A, I)
: Ii ← MonteCarloSampling(Ii, mpor)
: Ii ← Ii (update sampling information)
: mtotal ← mtotal + mpor
: w, c← GetIndexOfWorstIndividualAndConfidence(I)
: A← A \xw (Remove the worst individual)
: U ← AffectedIndividuals(A, xw)
: return A

Algorithm  Environmental Selection Truncation of Sampling-based Hypervolume-oriented Algorithm
(SHV). Requires a set A, a desired size k’, the number of samples per step mpor , the maximum allowed
number of samples per removal mmax , and the desired confidence level α.

decision vectors that share the same minimal value). The probability, that xk really
has the smallest contribution can be lower bounded by [, ]:

Pλ̂(Ci)

(
k−1∩
i=1

λ(Ck) ≤ λ(Ci)

)
≥

k−1∏
i=1

Pλ̂(Ci)

(
λ(Ck) ≤ λ(Ci)

)
(D.)

where Pλ̂(Ci)
(·) := P (·|λ̂(C1), . . . , λ̂(Ck)) denotes the conditional probability given the

contribution estimates λ̂(C1) to λ̂(Ck).

To determine the probability of λ(Ck) ≤ λ(Ci) given the estimates λ̂(Ck) and λ̂(Ci),
the confidence interval proposed by Agresti and Coull [] is considered:

Pλ̂(Ci)
(λ(Ck) ≤ λ(Ci)) ≈ Φ

 λ̂(Ci)− λ̂(Ck)√
p̃k(1−p̃k)

mk+2 λ(Sk)2 +
p̃i(1−p̃i)

mi+2 λ(Si)2

 (D.)

where p̃i := (Hi+1)(mi+2), and Φ denotes the cumulative standard normal distribution
function. Based on this confidence level, also the next individual to be sampled can be
determined as shown in the following.
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Step : Resampling or Removing
If the confidence according to Eq. D. of removing the individual with the smallest esti-
mate, say xw, attains the user defined level α then xw is removed (Line ). Otherwise,
one individual is selected of which the estimate is refined by drawing mpor additional
samples (Lines  and ); the individual to be sampled next is thereby determined by
two equiprobable options: either the individual with the smallest estimate is sampled
or one of the other individuals xc ∈ A \xw. In case of the latter, the chance that xc is
selected is proportional to the probability that λ(Cc) is smaller or equal λ(Cw), i.e.,

P (xc selected) ∝ P (λ(Cc) < λ(Cw))

which is approximated by Eq. D.. After sampling xc or xw took place, the confidence
according to Eq. D. is checked again, and as long as the desired confidence level is
not reached sampling continues, see Lines  to .

Since the difference between two contributions can be arbitrarily small, the procedure
may continue forever. In order to prevent this, a maximum number of samples mmax is
defined after which the individual xw with the smallest estimated contribution λ̂(Cw)

is removed regardless of the confidence level this decision reaches.

Step : Next Iteration Step
Instead of discarding all sampling statistics including the sampling hyperrectangles after
removing solution xw, first it is determined which contributions are actually affected
by the removal of xw. Those which are not affected keep both their sampling box
and sampling statistics. The potential influence of the removal of an individual xw

on the contribution of another individual xa can be checked by noting the following:
the removal clearly cannot decrease the contribution λ(Ca) of xa. On the other hand,
λ(Ca) only possibly increases when xw dominates part of Ca, which is not the case if
xw does not dominate the upper vertex ua of the sampling hyperrectangle Sr

a of xa.
Hence, the set Uw of potentially affected points by the removal of xw is:

Uw = {xa ∈ A | xw ≼ ua}

where ua is the upper vertex of the sampling hyperrectangle Sr
a according to Eq. ..

D. ·Proof of Theorem . on page 

Proof. According to Eq. . it holds:
IH(A, R) = λ

(
H(A, R))

= λ
( ∪̇

T ⊆A

H(T, A, R)
)

.



D. Complementary Material to Chapter  

By dividing the subsets into groups of equal size, one obtains

= λ
( ∪̇
1≤i≤|A|

∪̇
T ⊆A
|T |=i

H(T, A, R)
)

which can be rewritten as

=

|A|∑
i=1

λ
( ∪

T ⊆A
|T |=i

H(T, A, R)
)

because the inner unions are all disjoint. Now, for each subset of size i the Lebesque
measure is counted once for each element and then divide by 1/i:

=

|A|∑
i=1

1

i

∑
a∈A

λ
( ∪

T ⊆A
|T |=i
a∈T

H(T, A, R)
)

.

Changing the order of the sums results in

=
∑
a∈A

|A|∑
i=1

1

i
λ
( ∪

T ⊆A
|T |=i
a∈T

H(T, A, R)
)

and using Definition . one obtains

=
∑
a∈A

Ih(a, A, R)

which concludes the proof.

D. ·Proof of Theorem . on page 

Proof. From Theorem . it is known that∑
b1∈{a}∪B1

Ih(b1, {a} ∪B1, R) = IH({a} ∪B1, R)

which—following Definition .—equals

= λ
(
H({a} ∪B1, R)

)
.

Since {a} 4 B1, it holds H(b, R) ⊆ H({a}, R) for all b ∈ B1 and therefore the above
formula can be simplified to

= λ
(
H({a}, R)

)



 Appendix

The same holds analogically for the right-hand side of the equation in Theorem .
which proves the claim.

D. ·Proof of Theorem . on page 

Proof. Definition . states that

Ik
h(a, A, R) =

1

|T |
∑
T ∈T

∑
U⊆T
a∈U

1

|U |
λ
(
H(U, A, R)

)
where T denotes the set of subsets of A, that contain k elements, one of which is
individual a, i.e., T = {T ⊆ A; a ∈ T ∧ |T | = k}. Inserting the definition of T leads to

=
1

|T |
∑
T ∈A

|T |=k
a∈T

∑
U⊆T
a∈U

1

|U |
λ
(
H(U, A, R)

)
. (D.)

To combine the two summations of the previous equation, let o(U) denote the number
of times the summand 1

|U | λ
(
H(U, A, R)

)
is added for the same set U , which yields

=
1

|T |
∑
U⊆A
a∈U

o(U)
1

|U |
λ
(
H(U, A, R)

)
.

Splitting up this result into summation over subsets of equal size gives

=
1

|T |

k∑
i=1

1

i

∑
U⊆A
|U |=i
a∈U

o(U)λ
(
H(U, A, R)

)
.

For symmetry reasons, each subset U with cardinality |U | = i has the same number of
occurences o(U) =: oi

=
1

|T |

k∑
i=1

oi

i

∑
U⊆A
|U |=i
a∈U

λ
(
H(U, A, R)

)
,

and since all H(U, A, R) in the sum are disjoint, according to Eq. . one obtains

=
1

|T |

k∑
i=1

oi

i
λ
( ∪

U⊆A
|U |=i
a∈U

H(U, A, R)
)

,
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Figure D. U is a subset of T, which in turn is a subset of A;
all three sets contain a. Given one particular U of size i there
exist

(|A|−i
k−i

)
subsets T⊆ A of size k which are a superset of U.

In the example shown, there exist
(
−
−

)
=  sets U ⊆ A of

size  which are a superset of T with |T| = .

A

T

U

k=6

|A|=10

i=4

a

a

a

which is according to Eq. .

=

k∑
i=1

oi

i · |T |
λ
(
Hi(a, A, R)

)
.

After having transformed the original equation, the number oi is determined, i.e., the
number of times the term 1

|U | λ
(
H(U, A, R)

)
appears in Eq. D.. The term is added

once every time the corresponding set U is a subset of T . Hence, o(U) with |U | = i

corresponds to the number of sets T that are a superset of U . As depicted in Figure D.,
U defines i elements of T and the remaining k − i elements can be chosen freely from
the |A| − i elements in A that are not yet in T .

Therefore, there exist
(|A|−i

k−i

)
subsets T ∈ T that contain one particular U with |U | = i

and a ∈ U . Therefore, o(U) = oi =
(|A|−i

k−i

)
. Likewise, the total number of sets T is

|T | =
(|A|−1

k−1

)
.

Hence
oi

|T |
=

(|A|−i
k−i

)(|A|−1
k−1

) =
(|A| − i)!(k − 1)!((|A| − 1)− (k − 1))!

(k − i)!((|A| − i)− (k − i))!(|A| − 1)!

=
(|A| − i)!(k − 1)!

(|A| − 1)!(k − i)!
=

(k − 1)(k − 2) · · · (k − (i− 1))

(|A| − 1)(|A| − 2) · · · (|A| − (i− 1)

=

i−1∏
j=1

k − j

|A| − j
= αi .

Therefore

Ik
h(a, A, R) =

k∑
i=1

αi

i
λ
(
Hi(a, A, R)

)
which concludes the proof.

D. ·Comparison of HypE to different MOEAs–Detailed Results

Table D. on pages , , , and  reveals the performance score on every
testproblem of the DTLZ [], the WFG [], and the knapsack [] test problem



 Appendix

right side mirrored

water level

fixed nodes

n decks load L

intial bridge: warren truss

Figure E. Illustration of the truss bridge problem. Between the two banks with predefined abutments,
n decks with equal load have to be supported by a steel truss. As starting point, the individuals of the
evolutionary algorithm are initialized to the shown Warren truss without verticals. At each bank, two
supplementary fixed nodes are available to support the bridge additionally.

suites for different number of objectives ranging from 2 to 50 (see Section .. on
page ).

E · Complementary Material to Chapter 

In this appendix two new classes of problems for robustness investigations are presented:
first, in Section E. a real world mechanical problem is stated. Secondly, in Section E. a
novel test problem suite is presented to test the performance of algorithms with respect
to different robustness landscapes.

E. ·Truss Bridge Problem

First, the truss bridge problem is stated. Then, a problem-specific evolutionary algo-
rithm is presented to find good solutions of this mechanical problem.

Problem Statement
The task of the truss bridge problem is to build a bridge over a river. Between two
banks, n equally long decks have to be supported by a steel truss. A uniform load
is assumed over the decks that leads to n − 1 equal force vectors, see Figure E.. The
first objective of the truss bridge problem is to maximize the structural efficiency—the
ratio of load carried by the bridge without elastic failure to the total bridge mass, i.e.,
costs. The river is considered environmentally sensitive and therefore no supporting
structures are allowed below the water level. Furthermore, to limit the intervention in
The decks are of  meters long.
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Table D. Comparison of HypE to different MOEAs with respect to the hypervolume indicator. The first
number represents the performance score P, which stands for the number of participants significantly
dominating the selected algorithm. The number in brackets denote the hypervolume value, normalized
to the minimum and maximum value observed on the test problem.

Problem SHV IBEA NSGA-II RS SPEA HypE HypE*


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DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

Knapsack  (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)
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DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

Knapsack  (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

continued
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Problem SHV IBEA NSGA-II RS SPEA HypE HypE*
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DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

Knapsack  (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)
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DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

Knapsack  (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

continued
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DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

Knapsack  (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)
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DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

Knapsack  (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

continued
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DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

DTLZ   (.)  (.)  (.)  (.)  (.)  (.)  (.)

Knapsack  (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

WFG   (.)  (.)  (.)  (.)  (.)  (.)  (.)

the natural scenery, the second objective is to minimize the rise of the bridge, measured
from the decks at the center of the bridge.

The bridge is considered two dimensional, i.e., the entire structure lies in a two dimen-
sional plane. The slender members (referred to as bars) are connected at revolute joints
(referred to as nodes). Half of the external load on the decks is applied to each of the
two end joints and the weight of the members is considered insignificant compared to
the loads and is therefore omitted. Hence, no torsional forces are active and all forces
on members are tensile or compressive. For detailed information on these types of truss
bridges see W.F. Chen and L. Duan [].

In contrast to other well known truss problems, like for instance the ten bar truss
problem [], the nodes or bars are not specified in advanced, neither are they restricted
to discrete positions like as in []. In fact, all kinds of geometries are possible which
renders the problem much harder than the above mentioned ten bar truss problem.
The only restriction is, that the predefined decks can not be changed in any way. In

The height is arbitrarily defined at the middle of the bridge and not over the entire span width, to promote bridges
very different to those optimizing the structural efficiency—which tend to have the largest height at the center of
the bridge.
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addition to the two endpoints, two additional fixed nodes at each bank can, but do not
need to be, added to the truss.

The truss is made only from steel with yield strength MPa and density   kg/m3.
The maximum area of the members allowed is .m2, and the minimum area is set
to .·−5 m2. The decks have a fixed cross-sectional area of .m2.

Evolutionary Algorithm
In the following an evolutionary algorithm is presented tailored to the steel truss bridge
problem stated above. The algorithm consists of: (i) a general representation which
can model all possible bridges, (ii) an initialization of solutions, (iii) the calculation of
the objective values, and (iv) different mutation operators to generate new solutions.

Representation. The representation consists of variable length lists. The first list con-
tains all nodes. A node is thereby determined by its position (x, y), the degrees of
freedom of the node (i.e., whether the node is fixed or not), and the load attached to this
node—the latter is non-zero only for the n−1 predefined joints between the decks. The
second list contains the members that consist of references to the two endpoints of the
bar, and the cross-sectional area of the bar. Since the problem is mirror-symmetrical,
only the left half of the bridge is represented and solved, see below.

Initialization. As a starting point, all solutions are set to a Warren truss without verti-
cals, and with equilateral triangles. This ensures that the initial bridges are statically
determinate and stable. Of course, the risk increases that the diversity of solutions is
limited unnecessarily. As the results in Section .. on page  show this is not the
case though—the solutions found vary a lot from the initial Warren truss.

Calculating the Objective Function. To determine the first objective function, the struc-
tural efficiency, matrix analysis of the truss is performed; more specifically, the matrix
force method is used to determine the internal forces of all members. Given their area,
the weakest link can then be identified which defines the maximum load of the bridge.
If the bridge is statistically undetermined, i.e., the matrix becomes singular, the bridge
is classified infeasible. No repairing mechanism is used in this case. The weight of the
bridge, on the other hand, is determined by summing up the product of length, area,
and density of all bars. For the weight, the members constituting the deck of the bridge
are also included. Finally, dividing the maximum load by the total weight gives the
first objective, i.e., the structural efficiency.
The additional fixed nodes are located .m below the edge of the abutment and .m to the lest and right of the
edge respectively.
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removing member moving node breaking triangle &
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Figure E. Illustrates the eight mutation operators used to optimize the bridge problem.

The maximum vertical distance of a member or node above the deck level, measured
at the center of the bridge, gives the second objective. The rise of the bridge is to be
minimized.

Because of the symmetry of the problem, only the left half of the bridge is represented
and solved. To this end, all nodes lying on the mirror axis, the center of the bridge,
are fixed in the horizontal dimension. This models the fact, that due to symmetry,
the horizontal component of the force vectors at these nodes is zero. All members
except those on the mirror axis are considered twice in terms of cost, since they have
a symmetric counterpart. On the other hand, the internal load of members on the
symmetry axis is doubled after matrix analysis, since the right, not considered, half of
the bridge will contribute the same load as the left half.

Mutation Operators. Due to the complex representation of the bridges no crossover but
only mutation operators are applied to generate new bridges. In each generation, one
of the following eight mutation functions is used, where the probability of an operator
being applied is evolved by self-adaptation []:

moving member: A member is randomly picked and its endpoints are changed, such
that the member ends up at a different place.

removing member: A randomly chosen member is removed. Nodes that are no longer
connected are removed too.

adding member: Two nodes are picked randomly and a member is added between them.
moving nodes: The location of a node is moved uniformly within the interval [-m,m]×[-

m,m].
removing node: A randomly chosen node is removed; all members connected to that

node are removed as well.
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adding fixed node: A node from the set of fixed nodes is picked, and connected to a
randomly chosen (non-fixed) node.

breaking triangle and moving node: This mutation operator should help the formation
of repeated triangular patterns, which are known to be beneficial because triangles
can not be distorted by stress. An existing triangle is chosen, then one of its three
sides is divided in the middle by adding a new node. This node is then connected
by the corresponding median of the triangle. Since this new member would get zero
internal force, the new node is moved additionally by the operator moving node.

changing member area: This mutation operator randomly picks a member and changes
its area by factor ρ, where ρ ∼ U(0.5, 1.5) is randomly distributed between 0.5 and
1.5.

Figure E. illustrates the eight mutation operators. In addition to these operators, with
a probability of % the cross-sectional areas of the bridge are optimized according to
matrix analysis, i.e., each cross-sectional area is decreased as far as the maximum load
carried does not decrease.

Noise
Many different sources of uncertainty are conceivable for the truss problem, e.g., dif-
fering location of the nodes due to imprecise construction, and varying member areas
because of manufacturing imperfection or changing external load distributions. The
present thesis considers random perturbations of the yield strength of members. The
thicker a bar thereby is, the larger the variance of the noise. The reasoning behind this
assumption is that material properties are harder to control the larger a structure is.
The model σUTS ∼ σUTS ·U(1− (r2)δ, 1+(r2)δ) is used, where r is the radius of the bar
and σUTS denotes the yield strength of a member. As robustness measure, the maxi-
mum deviation according to Eq. . is used. However, in contrast to Section . where
a sampling procedure is used to estimate the worst case, the worst case is determined
analytically: for each member, the yield strength is set to the minimum value according
to the noise model, i.e., σw

UTS = σUTS · (1− (r2))δ. In all experimental comparisons, δ

was set to .

E. ·BZ Robustness Testproblem Suite

Existing test problem suites like Walking Fish Group (WFG) [] or Deb-Thiele-
Laumanns-Zitzler (DTLZ) [] feature different properties—like non-separability, bias,
many-to-one mappings and multimodality. However, these problems have no specific
robustness properties, and the robustness landscape is not known. For that reason, six
novel test problems are proposed denoted as Bader-Zitzler (BZ) that have different,
known robustness characteristics. These problems, BZ to BZ, allow to investigate
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the influence of different robustness landscapes on the performance of the algorithms.
All, except for BZ, share the following simple structure:

Minimize fi(x) =
xi

∥
∑k

i=1 xi∥β

·
(
1 + S(g(x))

)
1 ≤ i ≤ d

with g(x) =
1

n− k

n∑
i=k+1

xi

subject to 0 ≤ xi ≤ 1 for i = 1, 2, . . . , n

 (E.)

The first k decision variables are position related, the last n−k decision variables deter-
mine the distance to the Pareto front. The Pareto front is reached for xi = 0, k+1 ≤ i ≤
n, which leads to S(g(x)) = 0. The front has has the form

(
f1(x)

β + . . . + fd(x)
β
)1/β

=

1. The parameter β thereby specifies the shape of the Pareto front: for β > 1 the shape
is convex, for β = 1 it is linear and for 0 < β < 1 the shape is concave. The distance
to the Pareto front is given by S(g(x)), where g(x) is the mean of the distance related
decision variables xk+1, . . . , xn (an exception is BZ, where S is a function of g(x) and
the variance σ2 = Var({x1, . . . , xk})).

The distance to the front, i.e., S(g(x)), depends on a fast oscillating cosine function
that causes the perturbations of the objective values and where its amplitude determines
the robustness of a solution. In the following, realization of S are listed, and choice of
parameter β for the six test problems BZ to BZ and discuss their robustness landscape
is discussed. In the following for the sake of simplicity, let h := g(x)

BZ
For the first test problem, the distance to the front subject to h := g(x) is

S(h) = h +
(
(1− h) · cos(1000h)

)2
.

Figure (a) shows the function S as a function of h, as well as the maximum and
minimum within a neighborhood of Bδ (see Section .). As for all BZ test problems,
the (best case) distance to the front linearly decreases with decreasing d. The difference
to the worst case, on the other hand, goes in the opposite direction and increases. This
gives a continuous trade-off between the objective values f(x) (better for smaller values
of h) and the robustness r(x) (better the larger h). The parameter β is set to 1 which
gives a linear front shape.

BZ
For the second test problem, β = 2 describing a sphere-shaped Pareto front, the distance
to which is given by:

S(h) = 3h +
1

1 + exp(−200(h− 0.1))
·
(
(1− h) · cos(1000h)

)2
.
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Figure E. Distance to the front (gray line) as a function of g(x) (abscissa), see Eq. E.. The solid and
dashed line represent the minimal and maximal distance respectively within the interval [g(x-δ),g(x+δ)]
with δ= ..

Figure (b) shows the distance as a function of h. As in BZ, the robustness first
decreases with decreasing h. However, around h = 0.1 the exponential distribution
kicks in, and the amplitude of the cosine function becomes very small such that the
Pareto front and its adjacencies are robust. BZ tests, whether an algorithm is able to
overcome the decreasing robustness as approaching the Pareto front, or if the solutions
are driven away from the Pareto front to increase their robustness.

BZ
For the third instance of BZ the distance to the front is a product of two cosine terms:

S(h) = h +
(
cos(50h) cos(1000h)

)4
.

The concave Pareto front (β = 0.5) is non robust. However, by increasing the distance
to the front the term cos(50h) periodically leads to robust fronts, see Figure (c). An
algorithm therefore has to overcome many robust local fronts before reaching the robust
front that is closest to the Pareto front.

BZ
For BZ, the amplitude of the oscillation term does not change, see Figure (d):

S(h) = h + cos(1000h)2 .
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Therefore, the robustness does not change with h. The only way to minimize r(x)

(Eq. .) is to choose a h for which cos(1000h)2 is close to the worst case. The shape
of the Pareto front is convex with β = 3.

BZ
The distance to the front for the fifth BZ not only depends on the aggregated variable h,
but also on the variance of the distance related decision variables σ2 = Var({x1, . . . , xk}):

S(h, σ2) =

{
h +

(
(1− h) cos(1000h)

)2
σ2 < 0.04

h + 1.8
(
(1− h) cos(1000h)

)2 otherwise
This gives two different degrees of robustness for any choice of h. Depending on the
location in the objective space, the distance to the Pareto front (given by β = 0.3)
therefore varies for a given robustness level: it is smaller where σ2 < 0.04 and larger
where the variance exceeds ..

BZ
The last instance of the BZ suite uses a step function as distance S(h), see Figure (f),

S(h) =

{
h + 1 cos

(
1000.0

(0.01+h)hπ

)
> 0.9

h otherwise
.

This leads to different robust regions whose width decrease with decreasing distance to
the front. Therewith, the ability of an algorithm to determine the robustness of a solu-
tion is tested. For example, when the number of samples to determine the robustness
is small, the edges of a robust region might not be detected and a non-robust solutions
is misclassified as robust. As for BZ the Pareto front is a sphere (β = 2).
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