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ABSTRACT
The hypervolume indicator is a set measure used in evolu-
tionary multiobjective optimization to evaluate the perfor-
mance of search algorithms and to guide the search. Mul-
tiobjective evolutionary algorithms using the hypervolume
indicator transform multiobjective problems into single ob-
jective ones by searching for a finite set of solutions max-
imizing the corresponding hypervolume indicator. In this
paper, we theoretically investigate how those optimal μ-
distributions—finite sets of μ solutions maximizing the hy-
pervolume indicator—are spread over the Pareto front of
biobjective problems. This problem is of high importance
for practical applications as these sets characterize the pref-
erences that the hypervolume indicator encodes, i.e., which
types of Pareto set approximations are favored.

In particular, we tackle the question whether the hyper-
volume indicator is biased towards certain regions. For lin-
ear fronts we prove that the distribution is uniform with
constant distance between two consecutive points. For gen-
eral fronts where it is presumably impossible to characterize
exactly the distribution, we derive a limit result when the
number of points grows to infinity proving that the empiri-
cal density of points converges to a density proportional to
the square root of the negative of the derivative of the front.
Our analyses show that it is not the shape of the Pareto
front but only its slope that determines how the points that
maximize the hypervolume indicator are distributed. Ex-
perimental results illustrate that the limit density is a good
approximation of the empirical density for small μ. Further-
more, we analyze the issue of where to place the reference
point of the indicator such that the extremes of the front can
be found if the hypervolume indicator is optimized. We de-
rive an explicit lower bound (possibly infinite) ensuring the
presence of the extremes in the optimal distribution. This
result contradicts the common belief that the reference point
has to be chosen close to the nadir point: for certain types
of fronts, we show that no finite reference point allows to
have the extremes in the optimal μ-distribution.
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1. MOTIVATION
The field of evolutionary multiobjective optimization is

mainly concerned with the issue of approximating the Pareto-
optimal set, and various algorithms have been proposed for
this purpose. In recent years, search algorithms based on
the hypervolume indicator [27], a set measure reflecting the
volume enclosed by a Pareto front approximation and a ref-
erence set, have become increasingly popular, e.g., [16, 9,
14]. They overcome the problems arising with density-based
multiobjective evolutionary algorithms [21], since the hyper-
volume indicator guarantees strict monotonicity regarding
Pareto dominance [11, 28]. Furthermore, recent extensions
[23, 1] have broadened the applicability of this set measure
with respect to preference articulation and high-dimensional
objectives spaces. Hence, we expect that the scientific inter-
est in the hypervolume indicator for search and performance
assessment will grow further.

These developments motivate why several researchers have
been trying to better understand the hypervolume indicator
from a theoretical perspective, e.g., [11, 28, 23]. One key re-
sult is that a set of solutions achieving the maximum hyper-
volume for a specific problem covers the entire Pareto front
[11]. However, the corresponding set may contain an infinite
number of solutions, while in practice usually bounded solu-
tion sets are considered. Limiting the number of points to,
let us say μ, changes the situation: in this case, only a por-
tion of the Pareto front can be covered, and how the points
are distributed over the front depends on several aspects, in
particular on the front characteristics and the choice of the
reference set. The resulting placement of points reflects the
bias of the hypervolume indicator, and this issue has not
been investigated rigourosly so far.

For instance, Zitzler and Thiele [27] indicated that, when
optimizing the hypervolume in maximization problems,“con-
vex regions may be preferred to concave regions”, which is
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also stated in [18], whereas Deb et al. [7] argued that “[. . . ]
the hyper-volume measure is biased towards the boundary
solutions”. Knowles and Corne observed that a local op-
timum of the hypervolume indicator “seems to be ‘well-
distributed”’ [16] which was also confirmed empirically [17,
9]. Some authors also addressed the choice of the refer-
ence set which usually contains just a single reference point.
Knowles and Corne [17] demonstrated the impact of the ref-
erence point on the outcomes of selected multiobjective evo-
lutionary algorithms based on an experimental study. Fur-
thermore, rules of thumb exist, e.g., many authors recom-
mend to use the corner of a space that is a little bit larger
than the actual objective space as the reference point. Ex-
amples include the corner of a box 1% larger than the objec-
tive space in [15] or a box that is larger by an additive term
of 1 than the extremal objective values obtained as in [3].
In various publications, the reference point is chosen as the
nadir point of the investigated solution set, e.g., in [20, 19,
13], while others recommend rescaling of the objective values
everytime the hypervolume indicator is computed [25].

The above statements about the bias of the hypervolume
indicator seem to be contradictory and up to now no theo-
retical results are available that could confirm or falsify any
of these hypotheses. This paper provides a theory that ad-
dresses the bias issue for the biobjective case and thereby
contributes to a theoretical understanding of the principles
underlying the hypervolume indicator. To this end, we will
first formally state the setting considered in this paper (Sec-
tion 2) and present some fundamental results on the optimal
distributions of points on the Pareto front (Section 3). Sec-
tion 4 investigates the influence of a reference point on the
placement of a finite set of points. Afterwards, we will math-
ematically derive optimal placements of points for Pareto
fronts that can be described by a line (Section 5). Later, we
extend these results to general front shapes assuming that
the number of points of the distributions converges to infin-
ity (Section 6) and provide heuristic methods to determine
the optimal distributions of μ points (Section 7).

2. PROBLEM STATEMENT
Throughout this study, we consider a bicriterion optimiza-

tion problem F : Rd → R2 consisting of two objectives
(F1(x),F2(x)) = F(x) which are without loss of generality
to be minimized. The optimal solutions (Pareto optima)
for this problem are given by the minimal elements of the
ordered set (Rd,�) where � stands for the weak Pareto
dominance relation � := {(x, y) |x, y ∈ Rd ∧ ∀1 ≤ i ≤ 2 :
Fi(x) ≤ Fi(y)}. We assume that the overall optimization
goal is to approximate the set of Pareto optima—the Pareto
set—by means of a solution set and that the hypervolume
indicator [27] is used as a measure to quantify the quality
of a solution set. The image of the Pareto set under F is
called Pareto front or just front for short.

The hypervolume indicator IH gives, roughly speaking,
the volume of the objective subspace that is dominated by a
solution set A ⊂ Rd under consideration; it can be defined
as follows on the basis of a reference set R ⊂ R2:

IH(A) := λ(H(A,R)) (1)

where

• the set H(A,R) := {(z1, z2) ∈ R2 ; ∃x ∈ A ,∃(r1, r2) ∈
R : ∀1 ≤ i ≤ 2 : Fi(x) ≤ z ≤ ri} denotes the

( )f x

x

( )f x
1 2( , )r r r=

(0, 0)

( ,{ })H A r

Figure 1: The hypervolume H(A, R) corresponds
to the set of objective vectors (hatched area) that
is dominated by the solution set A, here described
by a function f(x), and which is enclosed by the
reference set R = r;

set of objective vectors that are enclosed by the front
F(A) := {F(x)|x ∈ A} given by A and the reference
set R, see Figure 1;

• the symbol λ stands for the Lebesgue measure with
λ(H(A,R)) =

∫
R2 1H(A,R)(z)dz and 1H(A,R) being the

characteristic function of H(A,R).

In the following, the common case of a single reference point
r = (r1, r2) ∈ R2 is considered only, i.e., R = {r}.

It is known that the maximum hypervolume value possible
is only achievable whenever the solution set A contains for
each point z on the Pareto front at least one corresponding
solution x ∈ A with F(x) = z, i.e., the image of A under
F contains the Pareto front [11]; however, this theoretical
result assumes that A can contain any number of solutions,
even infinitely many. In practice, the size of A is usually
restricted, e.g., by the population size when an evolutionary
algorithm is employed, and therefore the question is how
the indicator IH influences the optimal selection of a finite
number of μ solutions.

For reasons of simplicity, we will consider only the objec-
tive vectors in the following and remark that in the biob-
jective case the Pareto front can be described in terms of a
function f mapping the image of the Pareto set under F1

onto the image of the Pareto set under F2. We assume that
the image of F1 is a closed interval [xmin, xmax] and define
f as the function describing the Pareto front:

x ∈ [xmin, xmax] 
→ f(x).

An example is given in Figure 1 where a front is represented
in terms of this function f(x). Since f represents the shape
of the trade-off surface, we can conclude that, for mini-
mization problems, f is strictly monotonically decreasing
in [xmin, xmax]1. Furthermore, we only consider continuous
functions f .

Now, a set of μ points on the Pareto front is entirely
determined by the x-coordinates respectively the F1 val-
ues of these points, here denoted as (xμ

1 , . . . , xμ
μ), and f .

Without loss of generality, it is assumed that xμ
i ≤ xμ

i+1,

1If f is not strictly monotonically decreasing, we can
find Pareto-optimal points (x1, f(x1)) and (x2, f(x2)) with
x1, x2 ∈ [xmin, xmax] such that, without loss of generality,
x1 < x2 and f(x1) ≤ f(x2), i.e., (x1, f(x1)) is dominating
(x2, f(x2)).
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Figure 2: Hypervolume indicator computation for
μ solutions (xµ

1 , f(xµ
1 )), . . . , (xµ

µ , f(xµ
µ)) and the ref-

erence point r = (r1, r2) in the biobjective case as
defined in Eq. 2.

for i = 1, . . . , μ − 1 and for notation convenience, we set
xμ

μ+1 := r1 and f(xμ
0 ) := r2 (see Figure 2). The hypervolume

enclosed by these points can be, in analogy to Eq. 1, easily
determined: it is the sum of rectangles of width (xμ

i+1− xμ
i )

and height (f(xμ
0 )− f(xμ

i )) and therefore equals

Iμ
H((xμ

1 , . . . , xμ
μ)) :=

μ∑
i=1

(xμ
i+1 − xμ

i )(f(xμ
0 )− f(xμ

i )) . (2)

Here, the hypervolume indicator Iμ
H can be seen as a μ-

dimensional function of (xμ
1 , . . . , xμ

μ).
Before we can characterize a set of points maximizing the

hypervolume (i.e., Eq. 2), we need to be sure that the prob-
lem is well-defined, i.e., that there exists at least one set
of points maximizing Eq. 2. The existence is proven in the
next theorem assuming that f is continuous.

Theorem 1. (Existence of optimal μ-distributions)
If the function f describing the Pareto front is continuous,
there exists (at least) one set of μ points maximizing the
hypervolume.

Proof. Equation 2 defines a μ-dimensional function of
(xμ

1 , . . . , xμ
μ). If f is moreover continuous, IH in Eq. 2 is

continuous and upper bounded by the hypervolume contri-
bution of the entire front, i.e.,

∫ r1
xmin

∫ r2
f(xmax)

1{y>f(x)}dydx

where we prolong f for x > xmax by setting f(x) to the
constant value f(xmax). Therefore, from the Mean Value
Theorem there exists a set of μ points maximizing the hy-
pervolume indicator.

Note that the previous theorem states the existence but
not the uniqueness, which is not true in general but will be
for linear fronts (and certain choices of the reference point),
as proven later in the paper. A set of points maximizing the
hypervolume whose existence is proven in the previous theo-
rem will be called an optimal μ-distribution. The associated
value of the hypervolume is denoted as Iμ

H .
On the basis of this notation, the research question of this

paper can be reformulated as follows:

How are the vectors (xμ
1 , . . . , xμ

μ) characterized
that provide the maximum hypervolume given a
reference point r and a front shape f?

This issue will be addressed in the following sections.

3. PRELIMINARY RESULTS
This section presents preliminary results on optimal μ-

distributions. The first result is about how the hypervol-
ume associated with optimal μ-distributions increases with
μ. This result is in particular useful for the proof of Corol-
lary 1.

Lemma 1. Let X ⊆ R and f : X 
→ f(X) describe the
Pareto front. Let μ1 and μ2 ∈ N with μ1 < μ2, then

Iμ1
H < Iμ2

H

holds if X contains at least μ1 + 1 elements xi for which
xi < r1 and f(xi) < r2 holds.

Proof. To prove the lemma, it suffices to show the in-
equality for μ2 = μ1 + 1. Assume Dμ1 = {xμ1

1 , . . . , xμ1
μ1}

with xμ
i ∈ R is the set of x-values of the objective vectors of

an optimal μ1-distribution for the Pareto front defined by f
with a hypervolume value of Iμ1

H . Since X contains at least
μ1 + 1 elements, the set X\Dμ1 is not empty and we can
pick any xnew ∈ X\Dμ1 that is not contained in the opti-
mal μ1-distribution and for which f(xnew) is defined. Let
xr := min{x|x ∈ Dμ1 ∪ {r1}, x > xnew} be the closest ele-
ment of Dμ1 to the right of xnew (or r1 if xnew is larger than
all elements of Dμ1). Similarly, let fl := min{r2, {f(x)|x ∈
Dμ1 , x < xnew}} be the function value of the closest ele-
ment of Dμ1 to the left of xnew (or r2 if xnew is smaller
than all elements of Dμ1). Then, all objective vectors within
Hnew := [xnew, xr)×[fl, f(xnew)) are (weakly) dominated by
the new point (xnew, f(xnew)) but are not dominated by any
objective vector given by Dμ1 . Furthermore, Hnew is not a
null set (i.e. has a strictly positive measure) since xnew > xr

and fl > f(xnew) which gives Iμ1
H < Iμ2

H .
The next proposition is a central result of the paper stat-

ing that the x-coordinates of a set of μ points have to nec-
essarily satisfy a recurrence relation (Eq. 3) in order to be
an optimal μ-distribution. The key idea for the derivation
is that, given three consecutive points on the Pareto front,
moving the middle point will only affect that hypervolume
contribution that is solely dedicated to this point (the joint
hypervolume contributions remain fixed). Consequently, to
belong to an optimal μ-distribution, the hypervolume com-
ponent solely attributed to the middle point has to be max-
imal.

Proposition 1. (Necessary condition for optimal
μ-distributions) If f is continuous, differentiable and
(xμ

1 , . . . , xμ
μ) denote the x-coordinates of a set of μ points

maximizing the hypervolume indicator, then for all xmin <
xμ

i < xmax

f ′(xμ
i )
(
xμ

i+1 − xμ
i

)
= f(xμ

i )− f(xμ
i−1), i = 1 . . . μ (3)

where f ′ denotes the derivative of f , f(xμ
0 ) = r2 and xμ

μ+1 =
r1.

Proof. The position of a point (xμ
i , f(xμ

i )) between its
neighbors (xμ

i−1, f(xμ
i−1)) and (xμ

i+1, f(xμ
i+1)) only influences

the hypervolume with respect to the objective space that is
solely dominated by (xμ

i , f(xμ
i )). The volume of the single

hypervolume contribution of the point (xμ
i , f(xμ

i )) is denoted
as Hi (see Fig 3) and equals

Hi = (xμ
i+1 − xμ

i )(f(xμ
i−1)− f(xμ

i )) .
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Figure 3: Hypervolume contribution Hi of the point
(xµ

i , f(xµ
i )) for various i. Please note that moving

xµ
i ∈ [xµ

i−1, xµ
i+1] only affects Hi but not the rest of

the hypervolume (upper figures).

For an optimal μ-distribution, each of the hypervolume con-
tributions Hi has to be maximal with respect to xμ

i since

otherwise one would be able to increase Iμ
H by moving xμ

i .
Since the hypervolume contribution becomes zero for xμ

i at
the boundary of [xμ

i−1, x
μ
i+1], the maximum must lie in the

interior of the domain. Therefore, the necessary condition
holds that the derivative of Hi with respect to xμ

i is zero or
xμ

i is an endpoint of f , i.e., either xμ
i = xmin or xμ

i = xmax.
The derivative of Hi with respect to xμ

i equals

H
′
i (x

μ
i ) = −xμ

i+1f
′(xμ

i )− f(xμ
i−1) + f(xμ

i ) + xμ
i f ′(xμ

i )

Reorganizing the terms and setting H
′
i (x

μ
i ) to zero, we ob-

tain Eq. 3.
The previous proposition implies that the points of opti-

mal μ-distributions are linked with Eq. 3. In particular, the
μ points are entirely determined as soon as xμ

1 and xμ
2 are

set. Hence, finding the points of an optimal μ-distribution,
i.e., maximizing the seemingly μ-dimensional function (2),
turns out to be a two dimensional optimization problem.

A first corollary from Lemma 1 and Proposition 1 is that
an optimal point is either on an extreme of the Pareto front
or cannot be a stationary point of f , i.e., a point where the
derivative of f equals zero.

Corollary 1. If xμ
i , i = 2 . . . μ − 1 is a point of a set

of μ points maximizing the Hypervolume indicator and xμ
i is

not an endpoint of the Pareto front, then

f ′(xμ
i ) = 0 .

Proof. We will prove this result by contradiction. As-
sume that there exists i0 ∈ {2 . . . , μ−1} such that f ′(xμ

i0
) =

0, then with Eq. 3 we have f(xμ
i0

) = f(xμ
i0−1). The strict

monotonicity of f implies that xμ
i0

= xμ
i0−1 and therefore

Iμ
H = Iμ−1

H which contradicts Lemma 1.
Note that since f is strictly monotone, the only possible

interior stationary points are saddle points. Therefore, the
previous corollary states that the points xμ

2 , . . . , xμ
μ−1 cannot

be saddle points.

4. ON THE CHOICE OF THE REFERENCE
POINT

Optimal μ-distributions are the solutions of the maximiza-
tion problem in Eq. 2 that depends on the choice of the ref-
erence point. We ask now the question of how the choice of
the reference point is influencing optimal μ-distributions and
investigate in particular whether there exists a choice of the
reference point that implies that the extremes of the Pareto
front are included in optimal μ-distributions. We prove in
Theorem 2 (resp. Theorem 3) that if the derivative of the
Pareto front at the left extreme (resp. right extreme) is infi-
nite (resp. is zero), there is no choice of reference point that
will allow that the left (resp. right) extreme of the front is
included in optimal μ-distributions. This result contradicts
the common belief that it is sufficient to choose the reference
point slightly above and to the right to the nadir point to
obtain the extremes.

Moreover, when the derivative is finite at the left extreme
and non-zero at the right extreme we prove an explicit lower
bound (possibly infinite) for the choice of the reference point
ensuring that any reference point above this lower bound
guarantees that the extremes of the front are included in
optimal μ-distributions.

Recall that r = (r1, r2) denotes the reference point and
y = f(x) with x ∈ [xmin, xmax] represents the Pareto front
where therefore (xmin, f(xmin)) and (xmax, f(xmax)) are the
left and right extremal points. Since we want that all Pareto-
optimal solutions have a contribution to the hypervolume of
the front in order to be possibly part of optimal μ-distributions,
we assume that the reference point is dominated by all Pareto-
optimal solutions, i.e. r1 ≥ xmax and r2 ≥ f(xmin).

Theorem 2. Let μ be an integer larger or equal 2. As-
sume that f is continuous on [xmin, xmax], non-increasing,
differentiable on ]xmin, xmax[ and that f ′ is continuous on
]xmin, xmax[. If limx→xmin −f ′(x) < +∞, let

R2 := sup
x∈[xmin,xmax[

{f ′(x)(x− xmax) + f(x)} , (4)

where the supremum in the previous equation is possibly in-
finite. When R2 is finite, the leftmost extremal point is
contained in optimal μ-distributions if the reference point
r = (r1, r2) is such that r2 is strictly larger than R2.

Moreover, if limx→xmin −f ′(x) = +∞, the left extremal
point of the front is never included in optimal μ-distributions.

For the sake of readability of the section, the proof of the
above theorem, as well as the following proof are in the
appendix.

In a similar way, we derive the following theorem for in-
cluding the rightmost Pareto-optimal point (xmax, f(xmax))
into optimal μ-distributions.

Theorem 3. Let μ be an integer larger or equal 2. As-
sume that f is continuous on [xmin, xmax], non-increasing,
differentiable on ]xmin, xmax[ and that f ′ is continuous
and strictly negative on ]xmin, xmax]. Let

R1 := sup
x∈]xmin,xmax]

{
x +

f(x)− f(xmin)

f ′(x)

}
, (5)

where the supremum in the previous equation is possibly in-
finite. When R1 is finite, the rightmost extremal point is
contained in optimal μ-distributions if the reference point
r = (r1, r2) is such that r1 is strictly larger than R1.
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problem r1 r2

ZDT1, ZDT4 3 +∞
ZDT2 3/2 4/3
ZDT3 +∞ 5.4460

ZDT 6 3
2
− (arctan(9 π))2

72π2 ≈1.497 4/3
DTLZ1 1 1

DTLZ2, 3, and 4 33/4(
√

3−1)√
2

≈1.180 33/4(
√

3−1)√
2

≈1.180

DTLZ7 ≈13.372 ≈5.3054

Table 1: The values indicated in column “r1” (resp.
“r2”) correspond to the bound in Theorem 2 and 3
for ZDT [24] and DTLZ [8] test problems. Choosing
the first (resp. second) coordinate of the reference
point strictly larger than this value ensures that the
left (resp. right) extreme is included in optimal μ-
distributions. When a value is infinite it means that
there is no choice of the reference point allowing
to include the extreme. Note that ZDT5 (discrete
problem) as well as DTLZ5 and DTLZ6 (bi-objective
Pareto front contains only one point) are not shown
here.

If f ′(xmax) = 0, the right extremal point is never included
in optimal μ-distributions.

In the following example we illustrate how Theorem 2
and 3 can be used on test problems.

Example 1 (ZDT1 [24]). For f(x) = 1−√x and xmin

= 0, xmax = 1, f ′(x) = − 1
2
√

x
and therefore

lim
x→xmin

−f ′(x) = +∞ .

According to Theorem 2, the leftmost Pareto-optimal point
is never included in optimal μ-distributions. In addition, we
have f ′(x) < 0 for all x ∈]0, 1]. Let us compute R1 defined
in Eq. 5:

R1 = sup
x∈]0,1]

{x +
1−√x− 1

−1/2
√

x
} = sup

x∈]0,1]

{x + 2} = 3 .

From Theorem 3, we therefore know that the right extreme
is included if r1 > 3.

Table 1 shows the results also for other test problems.

5. EXACT DISTRIBUTION FOR LINEAR
FRONTS

In this section, we have a closer look at linear Pareto
fronts, i.e., fronts pictured as straight lines that can be for-
mally defined as f : x ∈ [xmin, xmax] 
→ αx+β where α < 0
and β ∈ R. For linear fronts with slope α = −1, Beume et
al. [2] already proved that a set of μ points maximizes the
hypervolume if and only if the points are equally spaced.
However, their method does not allow to state where the
leftmost and rightmost points have to be placed in order to
maximize the hypervolume with respect to a certain refer-
ence point; furthermore, the approach cannot be generalized
to arbitrary linear fronts with other slopes than −1. The
same result of equal distances between points that maxi-
mize the hypervolume has been shown with a different tech-
nique in [10] for the front f(x) = 1− x. Although the proof

1
2( )f r−

1r minx maxx

1 2( , )r r r=
1 2( , )r r r=

Figure 4: Optimal μ-distribution for μ = 4 points if
the reference point is not dominated by the extreme
points of the Pareto front (Theorem 5, left) and if
the reference point ensures that the extreme points
are included in the optimal μ-distribution (Theo-
rem 6, right).

technique used in [10] could be generalized to arbitrary lin-
ear fronts, the provided result again only holds under the
assumption that both the leftmost and rightmost point is
fixed. Therefore, the question of where μ points have to be
placed on linear fronts to maximize the hypervolume indi-
cator without any assumption on the extreme points is still
not answered.

Within this section, we show for linear fronts of arbitrary
slope, how optimal μ-distributions look like while making
no assumptions on the positions of extreme solutions. First
of all, we see as a direct consequence of Proposition 1 that
the distance between two neighbored solutions is constant
for arbitrary linear fronts:

Theorem 4. If the Pareto front is a (connected) line, op-
timal μ-distributions are such that the distance is the same
between all neighbored solutions.

Proof. Applying Eq. 3 to f(x) = αx + β implies that

α
(
xμ

i+1 − xμ
i

)
= f(xμ

i )− f(xμ
i−1) = α(xμ

i − xμ
i−1)

for i = 2, . . . , μ− 1 and therefore the distance between con-
secutive points of optimal μ-distributions is constant.

Moreover, in case the reference point is not dominated by the
extreme points of the Pareto front, i.e., r1 < xmax and r2 is
set such that there exists (a unique) xμ

0 ∈ [xmin, xmax] with
xμ

0 = f−1(r2), there exists a unique optimal μ-distribution
that can be determined exactly, see also the left plot of
Fig. 4:

Theorem 5. If the Pareto front is a (connected) line and
the reference point (r1, r2) is not dominated by the extremes
of the Pareto front, there exists a unique optimal μ-distribution
satisfying for all i = 1, . . . , μ

xμ
i = f−1(r2) +

i

μ + 1
· (r1 − f−1(r2)) . (6)

Proof. From Eq. 3 and the previous proof we know that

α
(
xμ

i+1 − xμ
i

)
= f(xμ

i )− f(xμ
i−1) = α(xμ

i − xμ
i−1) ,

for i = 1, . . . , μ if we define f(xμ
0 ) = r2 and xμ

μ+1 = r1 as
in Proposition 1; in other words, the distances between xi

and its two neighbors xi−1 and xi+1 are the same for each
1 ≤ i ≤ μ. Therefore, the points (xμ

i )1≤i≤μ partition the
interval [xμ

0 , xμ
μ+1] into μ + 1 sections of equal size and we

obtain Eq. 6.
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In the light of Section 4, the next issue we investigate
is the choice of the reference point ensuring that optimal
μ-distributions contain the extremes of the front. Since
f ′(x) = α with 0 < α < +∞, we see that R2 and R1

defined in Theorems 2 and 3 are finite and thus we now that
there exists a choice of reference point ensuring to obtain
the extremes. The following theorem states the correspond-
ing lower bounds for the reference point and specifies the
optimal μ-distribution associated with such a choice. The
right plot in Fig. 4 illustrates the optimal μ-distribution for
μ = 4 points.

Theorem 6. If the Pareto front is a (connected) line x ∈
[xmin, xmax] 
→ αx + β with α < 0, β ∈ R and the refer-
ence point r = (r1, r2) is such that r1 is strictly larger than
2xmax−xmin and r2 is strictly larger than 2αxmin−αxmax+
β, there exists a unique optimal μ-distribution. This optimal
μ-distribution includes the extremes of the front and for all
i = 1, . . . , μ

xμ
i = xmin +

i− 1

μ− 1
(xmax − xmin) . (7)

Proof. From Eq. 4, r2 strictly larger than

sup
x∈[xmin,xmax[

{α(x− xmax) + αx + β},

i.e., r2 strictly larger than 2αxmin − αxmax + β, ensures
the presence of xmin in optimal μ-distributions which yields
xμ

i = xmin for i = 1. From Eq. 5, r1 strictly larger than

supx∈]xmin,xmax] x + αx+β−αxmin−β
α

, i.e., r1 strictly larger
than supx∈]xmin,xmax] 2x−xmin = 2xmax−xmin, ensures the

presence of xmax in optimal μ-distributions and thus xμ
i =

xmax for i = μ. Using the same argument as in Theorem 5,
we prove the uniqueness of optimal μ-distributions, the equal
distances between the points and therefore Eq. 7.

As pointed out in the beginning, we do not know in gen-
eral whether optimal μ-distributions are unique or not. The-
orem 5 and 6 are two settings where we can ensure the
uniqueness.

6. OPTIMAL DENSITY
Except for simple fronts like the linear one, it is difficult

(presumably impossible) to determine precisely optimal μ-
distributions. However, in this section, we determine the
distributions of points on arbitrary fronts, when their num-
ber goes to infinity. These distributions are going to be
characterized in terms of density that can be used to approx-
imate, for a finite μ, the percentage of points in a particular
segment of the front. Moreover, it allows to quantify in a
rigorous manner the bias of the hypervolume with respect
to a given front. Our main result, stated in Theorem 7, is
that the density is proportional to the square root of the
negative of the derivative of the front.

Although the results in this section hold for arbitrary
Pareto front shapes that can be described by a continu-
ous function g : x ∈ [xmin, xmax] 
→ g(x) (lefthand plot
of Fig. 5), we will, without loss of generality, consider only
fronts f : x ∈ [0, xmax] 
→ f(x) with f(xmax) = 0. The
reason is that an arbitrary front shape g(x) can be easily
transformed into the latter type by translating it, i.e., by
introducing a new coordinate system x′ = x − xmin and
y′ = y − g(xmax) with y′ = f(x′) describing the front
in the new coordinate system (righthand plot of Fig. 5).

minx maxxmax( )g x

1 2( , )r r r= 1 min 2 max' ( , ( ))r r x r g x= − −

x

y

f x( ') =
min maxg x x g x( ' ) ( )+ −

g x( )

minx x x' = −

m
ax

y
y

g
x

'
(

)
=
−

Figure 5: Every continuous Pareto front g(x) (left)
can be described by a function f : x′ ∈ [0, x′

max] �→
f(x′) with f(x′

max) = 0 (right) by a simple transla-
tion.

This translation is not affecting the hypervolume indicator
which is computed relatively to the (also translated) refer-
ence point r′ = (r1 − xmin, r2 − g(xmax)).

In addition to assuming f to be continuous within the
entire domain [0, xmax], we assume that f is differentiable
and that its derivative is a continuous function f ′ defined
in the interval ]0, xmax[. For a certain number of points μ,
which later on will go to infinity, we would like to compute
optimal μ-distributions, i.e., the positions of the μ points
(xμ

1 , f(xμ
1 )), . . . , (xμ

μ, f(xμ
μ)) such that the hypervolume indi-

cator Iμ
H((xμ

1 , . . . , xμ
μ)) is maximized, see the upper left plot

in Fig. 6. Instead of maximizing the hypervolume indicator
Iμ

H , it is easy to see that, since r1r2 is constant, one can
equivalently minimize

r1r2 − Iμ
H((xμ

1 , . . . , xμ
μ)) =

μ∑
i=0

(
xμ

i+1 − xμ
i

)
f(xμ

i )

with xμ
0 = 0, f(xμ

0 ) = r2, and xμ
μ+1 = r1 as it is illustrated in

the upper right plot of Fig. 6. If we subtract the area below
the front curve, i.e., the integral

∫ xmax

0
f(x)dx of constant

value (lower left plot in Fig. 6), we see that minimizing

μ∑
i=0

(
xμ

i+1 − xμ
i

)
f(xμ

i )−
∫ xmax

0

f(x)dx (8)

is equivalent to maximizing the hypervolume indicator
Iμ

H((xμ
1 , . . . , xμ

μ)), cf. the lower right plot of Fig. 6.
For any integer μ, we now consider a sequence of μ ordered

points in [0, xmax], xμ
1 , . . . , xμ

μ that lie on the Pareto front.
We assume that the sequence converges—when μ goes to
∞—to a density δ(x) that is regular enough. Formally, the
density in x ∈ [0, xmax] is defined as the limit of the number
of points contained in a small interval [x, x + h[ normalized
by the total number of points μ when both μ goes to∞ and
h to 0, i.e.,

δ(x) = lim
μ→∞
h→0

(
1

μh

μ∑
i=1

1[x,x+h[(x
μ
i )

)
. (9)

In the following, we want to characterize the density asso-
ciated with points xμ

1 , . . . , xμ
μ that are maximizing the hy-

pervolume indicator. As discussed above, maximizing the
hypervolume is equivalent to minimizing Eq. 8. We here
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Figure 6: Illustration of the idea behind deriving
the optimal density: Instead of maximizing the hy-
pervolume indicator Iµ

H ((xµ
1 , . . . , xµ

µ)) (upper left),
one can minimize r1r2 − IH (upper right) which is
equivalent to minimize the integral between the at-
tainment surface of the solution set and the front
itself (lower right) which can be expressed with the
help of the integral of f (lower left).

argue that for a fixed number of points μ, minimizing

Eμ = μ

(
μ∑

i=0

(xμ
i+1 − xμ

i )(f(xμ
i ))−

∫ xmax

0

f(x)dx

)
(10)

is also equivalent to maximizing the hypervolume such that
we conjecture that the equivalence between minimizing Eμ

and maximizing the hypervolume also holds for μ going to
infinity.

We now heuristically deduce2 that the limit density of
Eq. 9 will minimize the limit of Eμ in Eq. 10. Therefore,
our proof consists of two steps: (1) compute the limit of
Eμ when μ goes to ∞. This limit is going to be a func-
tion of a density δ. (2) Find the density δ that minimizes
E(δ) := limμ→∞ Eμ. The first step therefore consists in
computing the limit of Eμ. Let us first recall some defini-
tions from integration theory. A function g : [0, xmax] →
R is said to be integrable if

∫ xmax

0
|g(x)|dx is finite (usu-

ally denoted
∫ xmax

0
|g(x)|dx < +∞). The set of functions

g that are integrable is a (Banach) vector space denoted
L1(0, xmax). Another Banach vector space is the set of
functions whose square is in L1(0, xmax), this space is de-
noted L2(0, xmax). From the Cauchy-Schwarz inequality,

L2(0, xmax) is included in L1(0, xmax)(3).

Lemma 2. If f is continuous, differentiable with the deri-
vative f ′ continuous, if xμ

1 , . . . , xμ
μ converge to a continuous

2“Heuristically deduce” means, we cannot prove it com-
pletely rigorously. Doing so would involve functional analy-
sis concepts that are far beyond the scope of this paper.
3The Cauchy-Schwarz inequality states that (

∫ xmax

0
|fg|)2 ≤

(
∫ xmax

0
f2)(

∫ xmax

0
g2) and therefore setting g = 1,

(
∫ xmax

0
|f |)2 ≤ (

∫ xmax

0
f2), i.e. if f ∈ L2(0, xmax) then

f ∈ L1(0, xmax).

density δ, with 1
δ
∈ L2(0, xmax), and ∃ c ∈ R+ such that

μ sup( sup
0≤i≤μ−1

|xμ
i+1 − xμ

i |, |xmax − xμ
μ|)→ c (11)

then Eμ converges for μ→∞ to

E(δ) := −1

2

∫ xmax

0

f ′(x)

δ(x)
dx . (12)

For the sake of readability of the section, the proof of the
previous lemma, as well as the following have been sent in
the appendix.

Note that the assumption in Eq. 11 characterizes the con-
vergence of the μ points to the density and is needed in the
proof.

As explained before, the limit density of an optimal μ-
distribution is minimizing E(δ). It remains therefore to find
the density minimizing E(δ). This optimization problem is
posed in a functional space, the Banach space L2(0, xmax)
and is also a constraint problem since the density δ has to
satisfy the constraint

J(δ) :=

∫ xmax

0

δ(x)dx = 1 .

The constraint optimization problem (P) that needs to be
solved is summarized in:

minimize E(δ), δ ∈ L2(0, xmax)

subject to J(δ) = 1
(P)

Theorem 7. The limit density of points maximizing the
hypervolume is a solution of the constraint optimization prob-
lem (P) and equals

δ(x) =

√−f ′(x)∫ xmax

0

√−f ′(x)dx
.

Remark 1. In order to get the density δF for points of
the front (x, f(x))x∈[0,xmax] and not on the projection onto
the x-axis, one has to normalize the previous result by the
norm of the tangent for points of the front, i.e.,

√
1 + f ′(x)2.

Therefore the density on the front is proportional to:

δF (x) ∝
√−f ′(x)√
1 + f ′(x)2

(13)

As we have seen, the density follows as a limit result from
the fact that the area between the attainment function of
the solution set with μ points and the front itself (lower
right plot of Fig. 6) has to be minimized and an optimal μ-
distribution for finite points converges to the density when
μ increases. It also follows that the number of points of
an optimal μ-distribution with x-values in a certain interval

[a, b] converges to
∫ b

a
δ(x)dx if μ goes to infinity. In the next

section, we will show experimentally that the density can
be used as an approximation of optimal μ-distributions not
only for a large μ but also for reasonably small numbers of
points.

Besides plotting the density to understand the bias of the
hypervolume indicator for specific fronts, the results above
also allow a more general statement on the hypervolume in-
dicator. From Theorem 7, we know that the density of points
only depends on the slope of the front and not on whether
the front is convex or concave in contrast to prevalent belief
[26, 18]. Figure 7 illustrates this dependency between the
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Figure 7: Shows the density at different slopes of the
Pareto front according to Eq. 13, expressed as the
angle α = arctan(f ′(x)) the front makes with the
positive x-axis, . Note that the density is normalized
such that δF (−45◦) = 1.

density and the slope of the front. We observe that the den-
sity has its maximum for front parts where the tangent has
a gradient of -45◦. Therefore, optimizing the hypervolume
indicator stresses so-called knee-points—parts of the Pareto
front decision makers believe to be interesting regions [5, 4,
6]. Extreme points are not generally preferred as claimed
in [7], since the density of points does not depend on the
position on the front but only on the gradient at the respec-
tive point. The gradient varies for different locations on the
front except for the linear case, so does the spacing between
points. Hence, the distributions of points can differ highly
from a well-distributed set of points suggested in [16].

7. APPROXIMATING OPTIMAL
μ-DISTRIBUTIONS

Deriving the density of points allowed us to investigate the
bias of the hypervolume in general as we have seen in the
previous section, but the question remains what happens for
a finite, especially small number of points. To answer this
question, we carry out an experimental study using two local
search strategies for approximating optimal μ-distributions
for finite μ. These search strategies serve to (i) investigate
optimal μ-distributions for small μ on various well-known
test problems and (ii) show that optimal μ-distributions can
be approximated accurately enough by the density already
for reasonably small μ.

Algorithms for finding optimal μ-distributions. To find
an approximation of an optimal distribution of μ points,
given by their x-values (xμ

1 , . . . , xμ
μ), we propose a simple

hill climber (Algorithm 1) based on Eq. 3. It starts with an
initial distribution that follows the distribution function of
Theorem 7 (Line 2). Such a distribution is obtained by

(xμ
1 , . . . , xμ

μ) s.t.

∫ x
μ
i

xmin

δ(x)dx =
i− 0.5

μ
(14)

which ensures that the cumulated density between two ad-
jacent points is constant. Additionally, the two points xμ

0 =
xmin with f(xμ

0 ) = r2 and xμ
μ+1 = r1 are added to simplify

Algorithm 1 Optimal μ-Distribution Version 1

1: procedure DistributeV1(μ, (xmin, xmax), (r1, r2), f)
2: (xμ

0 , . . . , xμ
μ+1)← InitialDist(μ, (xmin, xmax), f)

3: v ← CalculateHypervolume((xμ
0 , . . . , xμ

μ+1), f)
4: vold ← −1
5: while v − vold > ε do
6: for i← 1, μ do
7: xμ

i ← OptimalPosition(xμ
i−1, x

μ
i+1, f)

8: end for
9: vold ← v

10: v ← CalculateHypervolume((xμ
0 , . . . , xμ

μ+1), f)
11: end while
12: return (xμ

1 , . . . , xμ
μ)

13: end procedure

the handling of the extreme points. The resulting distri-
bution of points follows the density function of Theorem 7
with all points in order from left to right, i.e., xμ

i < xμ
j

∀ 0 ≤ i < j ≤ μ + 1.
After the points have been initialized, the contribution

to the hypervolume is maximized for all points successively
by placing each point according to Eq. 3 (Lines 6 to 8).
This ensures that either the hypervolume is increased in the
current step or the corresponding point is already placed
optimally with respect to its neighbors.

Since changing the position of one point might change
other points that were previously considered as optimally
placed to be suboptimally placed, the procedure is repeated
as long as the improvement to the hypervolume indicator is
larger than a user defined threshold ε (usually the precision
of software implementation).

Unfortunately, the optimal position of xμ
i according to

Eq. 3 cannot be determined analytically for some test prob-
lems, e.g., DTLZ2 [8]. In those cases, a modified version of
the hill climbing procedure is used (see Algorithm 2). After
creating an initial distribution of points as in Algorithm 1
(Line 2), the position of each point is again modified sepa-
rately one after another. But in contrast to Algorithm 1, a
new position x′μ

i is randomly determined by adding a Gaus-
sian distributed value centered around the previous value.
Initially, the variance σ2 of this random variable is set to a
large value such that big changes are attempted. For dis-
continuous front shapes (like DTLZ7 [8]) the position of the
point is alternatively set to any value between xmin and
xmax. This enables jumps of points to different parts of the
front even in the later stage of the algorithms. The x-value
xμ

i is set to the new position x′
i
μ

and the current hypervol-
ume vold is updated to v only if the hypervolume indica-
tor increases; otherwise, the modified position is discarded
(Lines 16 to 20).

If for no point an improvement of the hypervolume could
be realized, the variance σ2 is decreased by 5%. As soon as
the variance is smaller than ε (defined as in Algorithm 1),
the current distribution (xμ

1 , . . . , xμ
μ) is returned.

Note that both presented algorithms do not guarantee to
find optimal μ-distributions. However, the experiments pre-
sented in the following show that the point distributions
found by the two algorithms are converging to the density
if μ goes to infinity like optimal μ-distributions theoreti-
cally converges to the density. Testing the algorithms using
multiple random initial distributions instead of according to
Eq. 14 within the InitialDist(·) function in both algorithms
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Algorithm 2 Optimal μ-Distribution Version 2

1: procedure DistributeV2(μ, (xmin, xmax), (r1, r2), f)
2: (xμ

0 , . . . , xμ
μ+1)← InitialDist(μ, (xmin, xmax), f)

3: σ ← xmax − xmin

4: vold ← CalculateHypervolume((xμ
0 , . . . , xμ

μ+1), f)
5: while σ > ε do
6: improvement ← false
7: for i← 1, μ do
8: (x′μ

0 , . . . , x′μ
μ+1)← (xμ

0 , . . . , xμ
μ+1)

9: J ← either 0 or 1 (with prob. 1/2 each)
10: if J is 1 then
11: x′μ

i ← N(x′μ
i , σ2) � offset by GRV

12: else
13: x′μ

i ← U(xmin, xmax) � Jump
14: end if
15: v ← CalculateHypervolume((xμ

0 , . . . , xμ
μ+1), f)

16: if v > vold then
17: vold ← v
18: (xμ

0 , . . . , xμ
μ+1)← (x′μ

0 , . . . , x′μ
μ+1)

19: improvement ← true
20: end if
21: end for
22: if improvement is false then
23: σ ← 0.95 · σ
24: end if
25: end while
26: return (xμ

1 , . . . , xμ
μ)

27: end procedure

always lead to the same final distribution, although the con-
vergence turned out to be slower. This is a strong indicator
that the distributions found are indeed good approximations
of the optimal distributions of μ points.

We would also like to mention that every general pur-
pose search heuristic, e.g., an evolution strategy, could be
used for approximating optimal μ-distributions. In prelim-
inary experiments for example, we employed the CMA-ES
of [12] to derive optimal μ-distributions. It turned out that
the problem-specific algorithms are much faster than the
CMA-ES. Even when using the representation as a two-
dimensional problem (see Sec. 3), the CMA-ES needed sig-
nificantly more time than Algorithms 1 and 2 to derive
similar hypervolume values. Nevertheless, the distributions
found by CMA-ES where consistent with the distributions
found by Algorithm 1 and Algorithm 2.

Approximating optimal μ-distributions. With the help
of the algorithms proposed above, we now investigate op-
timal μ-distributions for concrete test problems where the
Pareto fronts are known. Figure 8 shows the best found μ-
distribution for the test problems of the ZDT [24] and DTLZ
[8] test function suites exemplary for μ = 50—more results
can be found on the supplementary web page http://www.

tik.ee.ethz.ch/sop/muDistributions. Furthermore, Ta-
ble 2 provides the corresponding front shapes and derived
densities. The optimal μ-distributions for ZDT1, ZDT2, and
DTLZ1 have been approximated by Algorithm 1 whereas the
μ-distributions for ZDT3, DTLZ2 and DTLZ7 have been
computed with Algorithm 2 because Eq. 3 cannot be solved
analytically or the front is not continuous. The reference
point has been set to (15,15) such that the extreme points
are contained in optimal μ-distributions if possible.

The experimentally derived optimal μ-distributions for
μ = 50 qualitatively show the same results as the theoreti-
cally predicted density: more points can be found at front
regions that have a gradient of −45◦, front parts that have a
very high or very low gradient are less crowded. In addition,
the equi-distance results for linear fronts (Theorems 5 and
6) can be observed for the linear DTLZ1 front.

Convergence to the density. From Section 6 we know that
the empirical density associated with optimal μ-distributions,
i.e., the normalized histogram, converges to the density when
μ goes to infinity and therefore that the limit density of
Theorem 7 approximates the normalized histogram. Here,
we investigate experimentally the quality of the approxima-
tion.

To this end, we compute approximations of the optimal
μ-distribution exemplary for the ZDT2 problem for μ = 10,
μ = 100, and μ = 1, 000 obtained with Algorithm 1. The
reference point has been set to (15, 15) as before. Figure 9
shows both the experimentally observed histogram of the μ
points on the front and the comparison between the theoreti-
cally derived density and the obtained experimental approx-
imation thereof. By visual inspection, we see that the his-
togram associated with the found μ-distributions converges
quickly to the density and that for μ = 1, 000 points, the
theoretically derived density gives already a sufficient de-
scription of the finite optimal μ-distribution.

8. DISCUSSION AND CONCLUSIONS
This study provides rigorous results on the question of how

optimal Pareto front approximations of finite size μ look like
when the hypervolume indicator is maximized. Most sur-
prising might be the fact that the hypervolume indicator
is insensitive to the way the front is bend (convex or con-
cave) which contradicts previous assumptions [27, 18]. As
we show, it is not the front shape itself but only the slope of
the front that determines the distribution of points on the
front. This implies that when optimizing the standard hy-
pervolume indicator, an evenly distributed solution set can
be obtained if and only if the front shape is a straight line.

Furthermore, the question of how to choose the reference
point in order to obtain extremes of the front, remaining
unsolved for several years, can now be answered by our the-
oretical results. The explicit lower bound provided in our
theorems will hopefully help practitioners.

Although the results presented here hold for two objec-
tives only, we assume that they generalize to an arbitrary
number of objectives. The extension of the proposed math-
ematical framework is the subject of future research.
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Table 2: Pareto front shapes and density for the test problems used throughout this paper. For problems
marked with a star, the used description is derived numerically. If not defined explicitly, we assume 0 ≤ x ≤ 1.

Problem front description density

bi-objective sphere f(x) =
(
(b− a)− x1/α

)α

δ(x) = C ·
√

(b− a− x1/α)
α−1 · x α−a

α

ZDT1, ZDT4 [24] f(x) = 1−√x δ(x) =
3

4x1/4

ZDT2 [24] f(x) = 1− x2 for x ∈ [0, 1] δ(x) =
3

2

√
x

ZDT3* [24] f(x) = 1−√x− x · sin(10πx) δ(x) = 1.5609·
√

1

2
√

x
+sin(10πx)+10πx cos(10πx)

for all x ∈ F where
F = [0, 0.0830015349] ∪ ]0.1822287280, 0.2577623634] ∪ ]0.4093136748, 0.4538821041] ∪
]0.6183967944, 0.6525117038] ∪ ]0.8233317983, 0.8518328654]

ZDT6 [24]
f(x) = 1− x2

for x ∈ [ arctan(9π)
6π

, 1] ≈ [0.08146, 1]

δ(x) = C · √x

with C = 3
2

(
1− arctan(9π)

6π

3/2
)−1

≈ 1.53570

DTLZ1 [8] f(x) =
1

2
− x δ(x) = 1

DTLZ2, DTLZ3, DTLZ4
[8] f(x) =

√
1− x2 δ(x) = 1.1803 ·

√
x√

1− x2

DTLZ7* [8] f(x) = 4− x(1 + sin(3πx)) δ(x) = 0.6566 ·
√

1 + sin(3πx) + 3πx cos(3πx)

for all x ∈ F where
F = [0, 0.2514118361] ∪ ]0.6316265307, 0.8594008566] ∪ ]1.3596178368, 1.5148392681] ∪
]2.0518383519, 2.1164268079]

APPENDIX

A. PROOFS OF SECTION 4
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Figure 10: Shows the notation and formula to com-
pute the hypervolume contribution H1 of the left-
most point P1.

Proof of Theorem 2
Theorem 2. Let μ be an integer larger or equal 2. As-

sume that f is continuous on [xmin, xmax], non-increasing,
differentiable on ]xmin, xmax[ and that f ′ is continuous on

]xmin, xmax[. If limx→xmin −f ′(x) < +∞, let

R2 := sup
x∈[xmin,xmax[

{f ′(x)(x− xmax) + f(x)} , (4)

where the supremum in the previous equation is possibly in-
finite. When R2 is finite, the leftmost extremal point is
contained in optimal μ-distributions if the reference point
r = (r1, r2) is such that r2 is strictly larger than R2.

Moreover, if limx→xmin −f ′(x) = +∞, the left extremal
point of the front is never included in optimal μ-distributions.

The proof of the theorem requires to establish two technical
lemmas. Let us assume the reference point is dominated by
the Pareto front, i.e., at least r1 > xmax and r2 > f(xmin).
Consider a set of points on the front and let the hypervol-
ume contribution of the leftmost point be P1 = (x1, f(x1))
(see Figure 10). This is a function of x1, the x-coordinate
of the second leftmost point x2, and the second coordinate
of the reference point r2. For a fixed x2, r2, the hyper-
volume contribution of the leftmost point with coordinate
x1 ∈ [xmin, x2[ is denoted H1(x1; x2, r2) and reads

H1(x1; x2, r2) = (x2 − x1)(r2 − f(x1)) . (15)

The following lemma establishes a key property of the func-
tion H1.

Lemma 3. If x1 → H1(x1; xmax, r2) is maximal for x1 =
xmin, then for any x2 ∈ ]x1, xmax], x1 → H1(x1; x2, r2) is
maximal for x1 = xmin, too.

Proof. Assume that H1(x1; xmax, r2) is maximal for x1 =
xmin, i.e.,

H1(xmin; xmax, r2) ≥ H1(x1; xmax, r2),∀x1 ∈]xmin, xmax]
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Figure 11: Illustration for proof of Lemma 3.

and let {D1, . . . , D5} denote the hypervolume indicator val-
ues of different non-overlapping rectangular areas shown in
Fig. 11. Then for all x1 in ]xmin, xmax],

H1(xmin; xmax, r2) ≥ H1(x1; xmax, r2)

can be rewritten using D1, . . . , D5 as

D1 + D2 + D4 ≥ D2 + D3 + D4 + D5

which in turn implies that D1 + D2 ≥ D2 + D3 + D5.
Since D5 ≥ 0, we have that D1 + D2 ≥ D2 + D3, which
corresponds to H1(xmin; x2, r2) ≥ H1(x1; x2, r2). Hence,
H1(x1; x2, r2) is also maximal for x1 = xmin for any choice
x2 ∈]x1, xmax].

Lemma 4. If limx→xmin f ′(x) = −∞, for any r2(> f(xmin))

lim
ε→0

(f(xmin)− f(xmin + ε))(x2 − (xmin + ε))

ε(r2 − f(xmin))
= +∞

Proof. In order to prove the lemma, we only need to
show that

lim
ε→0

f(xmin)− f(xmin − ε)

ε
= +∞ (16)

since the remaining term converges to the constant x2−xmin
r2−f(xmin)

.

To prove Eq. 16, we take a sequence (εn) with εn > 0 that
converges to 0 and we show that

lim
εn→0

f(xmin)− f(xmin + εn)

εn
= +∞ .

Thanks to the Mean Value Theorem, for all εn there exists
a cn ∈]xmin, xmin + εn[ such that

f(xmin)− f(xmin + εn)

εn
= −f ′(cn) .

When εn converges to 0, cn converges to xmin. Moreover,
f ′(xmin) = −∞ means that for every sequence θn that goes
to xmin for n → ∞, f ′(θn) converges to −∞. Therefore,

−f ′(cn) and as a consequence also f(xmin)−f(xmin+εn)
εn

con-
verges to +∞.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let x1 and x2 denote the x-co-
ordinates of the two leftmost points P1 = (x1, f(x1)) and
P2 = (x2, f(x2)) as in the previous proof. Then the hy-
pervolume contribution of P1 is given by Eq. 15. To prove
that P1 is the extremal point (xmin, f(xmin)), we need to
prove that x1 ∈ [xmin, x2] 
→ H1(x1; x2, r2) is maximal for
x1 = xmin. By using Lemma 3, we know that if we prove
that x1 → H1(x1; xmax, r2) is maximal for x1 = xmin then
we will also have that H1 : x1 ∈ [xmin, x2] 
→ H1(x1; x2, r2)

minx minx ε+ 2x

2 minr f x·( ( ))ε −
1 2r r r( , )=

min minf x f x( ( )) ( )ε−           +
2 minx x )( ·( )ε− +

Figure 12: If the function f describing the Pareto
front has an infinite derivative at its left extreme,
the leftmost Pareto-optimal point will never coin-
cide with the leftmost point xµ

1 of an optimal μ-
distribution; since for any finite r2 there exists an
ε > 0, such that dominated space gained (⊕) when
moving xµ

1 from xmin to xmin + ε is larger than the
space no longer dominated (�).

is maximal for x1 = xmin. Therefore we will now prove
that x1 → H1(x1; xmax, r2) is maximal for x1 = xmin. To
do so, we will show that the derivative of H1(x1; xmax, r2)
never equals zero for all xmin < x1 ≤ xmax. The derivative
of H1(x1; xmax, r2) equals f(x1) − r2 + f ′(x1)(x1 − xmax)
such that choosing r2 strictly larger than R2 ensures that
the derivative of H1(x1; xmax, r2) never equals zero.

Assume now limx→xmin f ′(x) = −∞ and that x1 = xmin

in order to get a contradiction. Let IH(xmin) be the hy-
pervolume solely dominated by the point xmin. If we shift
x1 to the right by ε > 0 (see Figure 12 for the illustra-
tion and notations) then the new hypervolume contribution
IH(xmin + ε) satisfies

IH(xmin + ε) = IH(xmin)

+ (f(xmin)− f(xmin + ε))(x2 − (xmin + ε))

− (r2 − f(xmin))ε

From Lemma 4, we know that for any r2, there exists ε > 0
such that

(f(xmin)− f(xmin + ε))(x2 − (xmin + ε))

(r2 − f(xmin))ε
> 1

or equivalently

(f(xmin)−f(xmin+ε))(x2−(xmin+ε))−(r2−f(xmin))ε > 0

which in turn implies that for any r2 there exists an ε such
that IH(xmin + ε) > IH(xmin) which contradicts the fact
that IH(xmin) is maximal and therefore that x1 = xmin.

Proof of Theorem 3
Theorem 3. Let μ be an integer larger or equal 2. As-

sume that f is continuous on [xmin, xmax], non-increasing,
differentiable on ]xmin, xmax[ and that f ′ is continuous
and strictly negative on ]xmin, xmax]. Let

R1 := sup
x∈]xmin,xmax]

{
x +

f(x)− f(xmin)

f ′(x)

}
, (5)

where the supremum in the previous equation is possibly in-
finite. When R1 is finite, the rightmost extremal point is
contained in optimal μ-distributions if the reference point
r = (r1, r2) is such that r1 is strictly larger than R1.
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If f ′(xmax) = 0, the right extremal point is never included
in optimal μ-distributions.

Proof. The proof of Theorem 3 is similar to the proof
of Theorem 2 where—instead of H1(x1; x2, r2)—we consider
the hypervolume contribution Hμ(xμ; xμ−1, r1) of the right-
most point xμ that equals (r1−xμ)(f(xμ−1)−f(xμ)) where
xμ−1 is the x-coordinate of the neighbor point of the right-
most point. Since the proof is similar we only sketch the
main points:
First of all, similarly to Lemma 3, if xμ → Hμ(xμ; xmin, r1)
is maximal for xμ = xmax, then for any xμ−1 ∈ [xmin, xμ[,
the contribution Hμ(xμ; xμ−1, r1) is maximal for xμ = xmax,
too.
Second, similarly to the proof of Theorem 2, we need to
show that the derivative of xμ → Hμ(xμ; xmin, r1) is never
zero. The derivative of Hμ(xμ; xmin, r1) equals (f(xμ) −
f(xmin))+f ′(xμ)(xμ−r1) such that setting r1 strictly larger
than R1 ensures that the derivative of Hμ(xμ; xmin, r1) is
never zero.
Third, assuming that f ′(xmax) equals zero, the last point
of Theorem 3 follows by contradiction by assuming that
xμ = xmax and showing that then one can increase the hy-
pervolume by moving xμ to the left.

B. PROOFS OF SECTION 6

Proof of Lemma 2
Lemma 2. If f is continuous, differentiable with the deri-

vative f ′ continuous, if xμ
1 , . . . , xμ

μ converge to a continuous
density δ, with 1

δ
∈ L2(0, xmax), and ∃ c ∈ R+ such that

μ sup( sup
0≤i≤μ−1

|xμ
i+1 − xμ

i |, |xmax − xμ
μ|)→ c (11)

then Eμ converges for μ→∞ to

E(δ) := −1

2

∫ xmax

0

f ′(x)

δ(x)
dx . (12)

Proof. Let us first note that the Cauchy-Schwarz in-
equality implies that∫ xmax

0

|f ′(x)/δ(x)|dx ≤
√∫ xmax

0

f ′(x)2dx

∫ xmax

0

(1/δ(x))2dx (17)

and since f ′ ∈ L2(0, xmax) and 1
δ
∈ L2(0, xmax), the right-

hand side of Eq. 17 is finite and Eq. 12 is well-defined.

Step 1. In a first step we are going to prove that Eμ defined
in Eq. 10 satisfies

Eμ = μ

μ∑
i=0

(
−1

2
f ′(xμ

i )(xμ
i+1 − xμ

i )2+O((xμ
i+1 − xμ

i )3)

)
(18)

To this end, we elongate the front to the right such that f
equals f(xmax) = 0 for x ∈ [xmax, xμ

μ+1]. Like that, we can

decompose
∫ xmax

0
f(x)dx as∫ xmax

0

f(x)dx +

∫ x
μ
μ+1

xmax

f(x)dx =

μ∑
i=0

∫ x
μ
i+1

x
μ
i

f(x)dx .

which can be rewritten as∫ xmax

0

f(x)dx =

μ∑
i=0

∫ x
μ
i+1

x
μ
i

f(x)dx (19)

because f(x) = 0 in the interval [xmax, xμ+1] and therefore∫ x
μ
μ+1

xmax
f(x)dx = 0. Since f is differentiable, we can use a

Taylor approximation of f in each interval [xμ
i , xμ

i+1] and
write

f(x) = f(xμ
i ) + f ′(xμ

i )(x− xμ
i ) + O((x− xμ

i )2) .

By integrating the previous equation between xμ
i and xμ

i+1

we obtain

∫ x
μ
i+1

x
μ
i

f(x)dx = f(xμ
i )(xμ

i+1 − xμ
i )+

1

2
f ′(xμ

i )(xμ
i+1 − xμ

i )2 + O((xμ
i+1 − xμ

i )3) (20)

Summing up for i = 0 to i = μ and using Eq. 19 we obtain

∫ xmax

0

f(x)dx =

μ∑
i=0

f(xμ
i )(xμ

i+1 − xμ
i )

+

μ∑
i=0

1

2
f ′(xμ

i )(xμ
i+1 − xμ

i )2 + O((xμ
i+1 − xμ

i )3) (21)

Hence, by definition of Eμ (Eq. 10) we obtain Eq. 18, which
concludes Step 1.

Step 2. We now decompose 1
2

∫ xmax

0
f ′(x)
δ(x)

dx into

1

2

∫ xmax

0

f ′(x)

δ(x)
dx =

1

2

μ−1∑
i=0

∫ x
μ
i+1

x
μ
i

f ′(x)

δ(x)
dx

+
1

2

∫ xmax

x
μ
μ

f ′(x)

δ(x)
dx

For the sake of convenience in the notations, for the remain-
der of the proof, we redefine xμ

μ+1 as xmax such that the
previous equation becomes

1

2

∫ xmax

0

f ′(x)

δ(x)
dx =

1

2

μ∑
i=0

∫ x
μ
i+1

x
μ
i

f ′(x)

δ(x)
dx (22)

For μ to∞, the assumption μ sup(sup0≤i≤μ−1 |xμ
i+1−xμ

i |, |xμ
μ−

xmax|) → c implies that the distance between two consec-
utive points |xμ

i+1 − xμ
i | as well as |xμ

μ − xmax| converges
to zero. Let x ∈ [0, xmax] and let us define for a given μ,
ϕ(μ) as the index of the points such that xμ

ϕ(μ) and xμ
ϕ(μ)+1

surround x:

xμ
ϕ(μ) ≤ x < xμ

ϕ(μ)+1 .

Since we assume that δ is continuous, a first order approxi-
mation of δ(x) is δ(xμ

ϕ(μ)
), i.e. δ(x) = δ(xμ

ϕ(μ)
)+O(xμ

ϕ(μ)+1
−

xμ
ϕ(μ)) and therefore by integrating between xμ

ϕ(μ) and xμ
ϕ(μ)+1

we obtain

∫ x
μ
ϕ(μ)+1

x
μ
ϕ(μ)

δ(x)dx = δ(xμ
ϕ(μ))(x

μ
ϕ(μ)+1 − xμ

ϕ(μ))

+ O((xμ
ϕ(μ)+1 − xμ

ϕ(μ))
2) (23)

Moreover by definition of the density δ,
∫ x

μ
ϕ(μ)+1

x
μ
ϕ(μ)

δ(x)dx ap-

proximates the number of points contained in the interval
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[xμ
ϕ(μ)

, xμ
ϕ(μ)+1

[ (i.e. one) normalized by μ:

μ

∫ x
μ
ϕ(μ)+1

x
μ
ϕ(μ)

δ(x)dx = 1 + O((xμ
ϕ(μ)+1 − xμ

ϕ(μ))) . (24)

Using Eq. 23 and Eq. 24, we thus have

1

δ(xμ
ϕ(μ))

= μ(xμ
ϕ(μ)+1 − xμ

ϕ(μ)) + O(μ(xμ
ϕ(μ)+1 − xμ

ϕ(μ))
2) .

Therefore for every i we have that

1

δ(xμ
i )

= μ(xμ
i+1 − xμ

i ) + O(μ(xμ
i+1 − xμ

i )2) . (25)

Since f ′/δ is continuous, we also obtain∫ x
μ
i+1

x
μ
i

f ′(x)

δ(x)
dx =

f ′(xμ
i )

δ(xμ
i )

(xμ
i+1 − xμ

i ) + O((xμ
i+1 − xμ

i )2)

Injecting Eq. 25 in the previous equation, we obtain

∫ x
μ
i+1

x
μ
i

f ′(x)

δ(x)
dx = μf ′(xμ

i )(xμ
i+1−xμ

i )2+O(μ(xμ
i+1−xμ

i )3)

Multiplying by 1/2 and summing up for i from 0 to μ and
using Eq. 22 we obtain

1

2

∫ xmax

0

f ′(x)

δ(x)
= −Eμ +

μ∑
i=0

O(μ(xμ
i+1 − xμ

i )3) (26)

Let us define Δμ as sup(sup0≤i≤μ−1 |xμ
i+1−xμ

i |, |xmax−xμ
μ|).

By assumption, we know that μΔμ converges to a positive
constant c. The last term of Eq. 26 satisfies

|
μ∑

i=0

O(μ(xμ
i+1 − xμ

i )3)| ≤ Kμ2(Δμ)3

where K > 0. Since μΔμ converges to c, (μΔμ)2 converges
to c2. With Δμ converges to 0, we therefore have that μ2Δ3

μ

converges to 0. Taking the limit in Eq. 26 we therefore
obtain

−1

2

∫ xmax

0

f ′(x)

δ(x)
dx = lim

μ→∞
Eμ

Proof of Theorem 7
Theorem 7. The limit density of points maximizing the

hypervolume is a solution of the constraint optimization prob-
lem (P) and equals

δ(x) =

√−f ′(x)∫ xmax

0

√−f ′(x)dx
.

Proof. We first need to compute the differential of E
with respect to the density δ, denoted by DEδ(h). Let h ∈
L2(0, xmax). Then,

E(δ + h) = −1

2

∫ xmax

0

f ′(x)

δ(x) + h(x)
dx

= −1

2

∫ xmax

0

f ′(x)

δ(x)
(
1 + h(x)

δ(x)

)dx .

Due to the Taylor expansion of 1
1+y

y→0
= 1 − y + o(y) this

equals

E(δ + h) = −1

2

∫ xmax

0

f ′(x)

δ(x)

(
1− h(x)

δ(x)
+ o (‖h(x)‖)

)
dx

= −1

2

∫ xmax

0

f ′(x)

δ(x)
dx +

1

2

∫ xmax

0

f ′(x)h(x)

δ(x)2
dx

− 1

2

∫ xmax

0

f ′(x)

δ(x)
o (‖h(x)‖) dx

= E(δ) +
1

2

∫ xmax

0

f ′(x)h(x)

δ(x)2
dx + o (‖h(x)‖) .

Since h → 1
2

∫ xmax

0
f ′h
δ2 dx is linear (in h), we know from

differential calculus that

DEδ(h) =
1

2

∫ xmax

0

f ′(x)

δ(x)2
h(x)dx .

In a similar way,

J(δ + h) =

∫ xmax

0

(δ(x) + h(x)) dx

=

∫ xmax

0

δ(x)dx +

∫ xmax

0

h(x)dx

= J(δ) +

∫ xmax

0

h(x)dx

and as h → ∫ xmax

0
h(x)dx is linear, the differential of J

equals

DJδ(h) =

∫ xmax

0

h(x)dx .

From the the Lagrange multiplier theorem for Banach spaces
[22], we know that there exists a λ ∈ R such that the solution
of P satisfies

∀h : DEδ(h) + λDJδ(h) = 0

that can be rewritten as

∀h :
1

2

∫ xmax

0

f ′(x)

δ(x)2
h(x)dx + λ

∫ xmax

0

h(x)dx = 0

or

∀h :

∫ xmax

0

(
1

2

f ′(x)

δ(x)2
+ λ

)
h(x)dx = 0 . (27)

Since a solution for P has to satisfy Eq. 27 for all h, we know

for the choice of h(x) = 1
2

f ′(x)

δ(x)2
+ λ that

∫ xmax

0

(
1

2

f ′(x)

δ(x)2
+ λ

)2

dx = 0

holds which in turn implies that 1
2

f ′
δ2 + λ = 0 or in other

words that

δ(x) =
√
−f ′(x)/

√
2λ

where the constant λ is still to be determined. We know that
δ is a density and needs therefore to satisfy that

∫ xmax

0
δ(x)dx =

1. Then, we can determine the missing
√

2λ from

1 =

∫ xmax

0

δ(x)dx =

∫ xmax

0

√−f ′(x)√
2λ

dx

=
1√
2λ

∫ xmax

0

√
−f ′(x)dx
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as
√

2λ =
∫ xmax

0

√−f ′(x)dx which yields then

δ(x) =

√−f ′(x)∫ xmax

0

√−f ′(x)dx
.
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